def test_experiment_titanic(self): papermill.execute_notebook( "Experiment.ipynb", "/dev/null", parameters=dict( dataset="/tmp/data/titanic.csv", target="Survived", filter_type="remover", model_features="", ordinal_features="", penalty="l2", C=1.0, fit_intercept=True, class_weight=None, solver="liblinear", max_iter=100, multi_class="auto", method="predict_proba", ), ) papermill.execute_notebook( "Deployment.ipynb", "/dev/null", ) data = datasets.titanic_testdata() with server.Server() as s: response = s.test(data=data) names = response["names"] ndarray = response["ndarray"] self.assertEqual(len(ndarray[0]), 14) # 11 features + 1 class + 2 probas self.assertEqual(len(names), 14)
def test_experiment_titanic(self): papermill.execute_notebook( "Experiment.ipynb", "/dev/null", parameters=dict( dataset="/tmp/data/titanic.csv", target="Survived", filter_type="remover", model_features="", one_hot_features="", n_estimators=10, criterion="gini", max_depth=None, max_features="auto", class_weight=None, method="predict_proba", ), ) papermill.execute_notebook( "Deployment.ipynb", "/dev/null", ) data = datasets.titanic_testdata() with server.Server() as s: response = s.test(data=data) names = response["names"] ndarray = response["ndarray"] self.assertEqual(len(ndarray[0]), 14) # 11 features + 1 class + 2 probas self.assertEqual(len(names), 14)
def test_experiment_titanic(self): papermill.execute_notebook( "Experiment.ipynb", "/dev/null", parameters=dict( dataset="/tmp/data/titanic.csv", target="Survived", filter_type="remover", model_features="", one_hot_features="", C=1.0, kernel="rbf", degree=3, gamma="auto", probability=True, max_iter=-1, method="predict_proba", ), ) papermill.execute_notebook( "Deployment.ipynb", "/dev/null", ) data = datasets.titanic_testdata() with server.Server() as s: response = s.test(data=data) names = response["names"] ndarray = response["ndarray"] self.assertEqual(len(ndarray[0]), 14) # 11 features + 1 class + 2 probas self.assertEqual(len(names), 14)
def test_experiment_titanic(self): papermill.execute_notebook( "Experiment.ipynb", "/dev/null", parameters=dict( dataset="/tmp/data/titanic.csv", target="Survived", filter_type="remover", model_features="", one_hot_features="", time_left_for_this_task=30, per_run_time_limit=30, ensemble_size=5, method="predict_proba", ), ) papermill.execute_notebook( "Deployment.ipynb", "/dev/null", ) data = datasets.titanic_testdata() with server.Server() as s: response = s.test(data=data) names = response["names"] ndarray = response["ndarray"] self.assertEqual(len(ndarray[0]), 14) # 11 features + 1 class + 2 probas self.assertEqual(len(names), 14)
def test_experiment_titanic(self): papermill.execute_notebook( "Experiment.ipynb", "/dev/null", parameters=dict( dataset="/tmp/data/titanic.csv", target="Survived", filter_type="remover", model_features="", one_hot_features="", hidden_layer_sizes=100, activation="relu", solver="adam", learning_rate="constant", max_iter=200, shuffle=True, method="predict_proba", ), ) papermill.execute_notebook( "Deployment.ipynb", "/dev/null", ) data = datasets.titanic_testdata() with server.Server() as s: response = s.test(data=data) names = response["names"] ndarray = response["ndarray"] self.assertEqual(len(ndarray[0]), 14) # 11 features + 1 class + 2 probas self.assertEqual(len(names), 14)
def test_experiment_titanic(self): papermill.execute_notebook( "Experiment.ipynb", "/dev/null", parameters=dict( dataset="/tmp/data/titanic.csv", filter_type = "remover", model_features = "Survived", max_samples="auto", contamination=0.1, max_features=1.0, ), ) papermill.execute_notebook( "Deployment.ipynb", "/dev/null", ) data = datasets.titanic_testdata() with server.Server() as s: response = s.test(data=data) names = response["names"] ndarray = response["ndarray"] self.assertEqual(len(ndarray[0]), 12) # 11 features + 1 anomaly score self.assertEqual(len(names), 12)
def test_experiment_titanic(self): papermill.execute_notebook( "Experiment.ipynb", "/dev/null", parameters=dict( dataset="/tmp/data/titanic.csv", target="Survived", strategy_num="mean", strategy_cat="most_frequent", fillvalue_num=0, fillvalue_cat="", ), ) papermill.execute_notebook( "Deployment.ipynb", "/dev/null", ) data = datasets.titanic_testdata() with server.Server() as s: response = s.test(data=data) names = response["names"] ndarray = response["ndarray"] self.assertEqual(len(ndarray[0]), 11) # 11 features self.assertEqual(len(names), 11)
def test_experiment_titanic(self): papermill.execute_notebook( "Experiment.ipynb", "/dev/null", parameters=dict( dataset="/tmp/data/titanic.csv", filter_type="remover", model_features="Survived", n_clusters=3, n_init=10, max_iter=300, algorithm="auto", ), ) papermill.execute_notebook( "Deployment.ipynb", "/dev/null", ) data = datasets.titanic_testdata() with server.Server() as s: response = s.test(data=data) names = response["names"] ndarray = response["ndarray"] self.assertEqual(len(ndarray[0]), 15) # 11 features+ 1 cluster + 3 distance to clusters self.assertEqual(len(names), 15)
def test_experiment_titanic(self): papermill.execute_notebook( "Experiment.ipynb", "/dev/null", parameters=dict( dataset="/tmp/data/titanic.csv", target="Survived", high_cardinality_features="Pclass", method="kmeans", threshold=0.1, n=10, ), ) papermill.execute_notebook( "Deployment.ipynb", "/dev/null", ) data = datasets.titanic_testdata() with server.Server() as s: response = s.test(data=data) names = response["names"] ndarray = response["ndarray"] self.assertEqual(len(ndarray[0]), 11) # 11 features self.assertEqual(len(names), 11)
def test_experiment_titanic(self): papermill.execute_notebook( "Experiment.ipynb", "/dev/null", parameters=dict( dataset="/tmp/data/titanic.csv", target="Survived", min_features=3, n_folds=10, ), ) papermill.execute_notebook( "Deployment.ipynb", "/dev/null", ) data = datasets.titanic_testdata() with server.Server() as s: response = s.test(data=data) names = response["names"] ndarray = response["ndarray"] self.assertEqual(len(ndarray[0]), 10) # 11 features - 1 removed self.assertEqual(len(names), 10)