def make_lognormal(kwargs):
    kwargs['examples'] = [kwargs.pop('example')]
    return Fixture(pyro_dist=(dist.lognormal, LogNormal),
                   scipy_dist=sp.lognorm,
                   scipy_arg_fn=lambda mu, sigma: ((np.array(sigma),),
                                                   {"scale": np.exp(np.array(mu))}),
                   **kwargs)
Exemple #2
0
def lognormal():
    return Fixture(pyro_dist=(dist.lognormal, LogNormal),
                   scipy_dist=sp.lognorm,
                   examples=[
                       {
                           'mu': [1.4],
                           'sigma': [0.4],
                           'test_data': [5.5]
                       },
                   ],
                   scipy_arg_fn=lambda mu, sigma:
                   ((np.array(sigma), ), {
                       "scale": np.exp(np.array(mu))
                   }))
Exemple #3
0
continuous_dists = [
    Fixture(
        pyro_dist=dist.Uniform,
        scipy_dist=sp.uniform,
        examples=[
            {
                "low": [2.0],
                "high": [2.5],
                "test_data": [2.2]
            },
            {
                "low": [2.0, 4.0],
                "high": [3.0, 5.0],
                "test_data": [[[2.5, 4.5]], [[2.5, 4.5]], [[2.5, 4.5]]],
            },
            {
                "low": [[2.0], [-3.0], [0.0]],
                "high": [[2.5], [0.0], [1.0]],
                "test_data": [[2.2], [-2], [0.7]],
            },
        ],
        scipy_arg_fn=lambda low, high: (
            (),
            {
                "loc": np.array(low),
                "scale": np.array(high) - np.array(low)
            },
        ),
    ),
    Fixture(
        pyro_dist=dist.Exponential,
Exemple #4
0
        super().__init__(dist.Normal(loc, scale))


continuous_dists = [
    Fixture(pyro_dist=dist.Uniform,
            scipy_dist=sp.uniform,
            examples=[
                {
                    'low': [2.],
                    'high': [2.5],
                    'test_data': [2.2]
                },
                {
                    'low': [2., 4.],
                    'high': [3., 5.],
                    'test_data': [[[2.5, 4.5]], [[2.5, 4.5]], [[2.5, 4.5]]]
                },
                {
                    'low': [[2.], [-3.], [0.]],
                    'high': [[2.5], [0.], [1.]],
                    'test_data': [[2.2], [-2], [0.7]]
                },
            ],
            scipy_arg_fn=lambda low, high: (
                (), {
                    "loc": np.array(low),
                    "scale": np.array(high) - np.array(low)
                })),
    Fixture(pyro_dist=dist.Exponential,
            scipy_dist=sp.expon,
            examples=[
                {
Exemple #5
0
import scipy.stats as sp

import pyro.distributions as dist
from pyro.distributions.testing.naive_dirichlet import NaiveBeta, NaiveDirichlet
from pyro.distributions.testing.rejection_exponential import RejectionExponential
from pyro.distributions.testing.rejection_gamma import ShapeAugmentedBeta, ShapeAugmentedDirichlet, ShapeAugmentedGamma
from tests.distributions.dist_fixture import Fixture

continuous_dists = [
    Fixture(pyro_dist=dist.Uniform,
            scipy_dist=sp.uniform,
            examples=[
                {'low': [2.], 'high': [2.5],
                 'test_data': [2.2]},
                {'low': [2., 4.], 'high': [3., 5.],
                 'test_data': [[[2.5, 4.5]], [[2.5, 4.5]], [[2.5, 4.5]]]},
                {'low': [[2.], [-3.], [0.]],
                 'high': [[2.5], [0.], [1.]],
                 'test_data': [[2.2], [-2], [0.7]]},
            ],
            scipy_arg_fn=lambda low, high: ((), {"loc": np.array(low),
                                                 "scale": np.array(high) - np.array(low)})),
    Fixture(pyro_dist=dist.Exponential,
            scipy_dist=sp.expon,
            examples=[
                {'rate': [2.4],
                 'test_data': [5.5]},
                {'rate': [2.4, 5.5],
                 'test_data': [[[5.5, 3.2]], [[5.5, 3.2]], [[5.5, 3.2]]]},
                {'rate': [[2.4, 5.5]],
                 'test_data': [[[5.5, 3.2]], [[5.5, 3.2]], [[5.5, 3.2]]]},
Exemple #6
0
import scipy.stats as sp

import pyro.distributions as dist
from pyro.distributions import (Bernoulli, Beta, Binomial, Categorical, Cauchy, Dirichlet, Exponential, Gamma,
                                HalfCauchy, LogNormal, Multinomial, MultivariateNormal, Normal, OneHotCategorical,
                                Poisson, Uniform)
from tests.distributions.dist_fixture import Fixture

continuous_dists = [
    Fixture(pyro_dist=(dist.uniform, Uniform),
            scipy_dist=sp.uniform,
            examples=[
                {'a': [2], 'b': [2.5],
                 'test_data': [2.2]},
                {'a': [2, 4], 'b': [3, 5],
                 'test_data': [[[2.5, 4.5]], [[2.5, 4.5]], [[2.5, 4.5]]]},
                {'a': [[2], [-3], [0]],
                 'b': [[2.5], [0], [1]],
                 'test_data': [[2.2], [-2], [0.7]]},
            ],
            scipy_arg_fn=lambda a, b: ((), {"loc": np.array(a),
                                            "scale": np.array(b) - np.array(a)})),
    Fixture(pyro_dist=(dist.exponential, Exponential),
            scipy_dist=sp.expon,
            examples=[
                {'lam': [2.4],
                 'test_data': [5.5]},
                {'lam': [2.4, 5.5],
                 'test_data': [[[5.5, 3.2]], [[5.5, 3.2]], [[5.5, 3.2]]]},
                {'lam': [[2.4, 5.5]],
                 'test_data': [[[5.5, 3.2]], [[5.5, 3.2]], [[5.5, 3.2]]]},
Exemple #7
0
                                Uniform)
from tests.distributions.dist_fixture import Fixture

continuous_dists = [
    Fixture(pyro_dist=(dist.uniform, Uniform),
            scipy_dist=sp.uniform,
            examples=[
                {
                    'a': [2],
                    'b': [2.5],
                    'test_data': [2.2]
                },
                {
                    'a': [2, 4],
                    'b': [3, 5],
                    'test_data': [[[2.5, 4.5]], [[2.5, 4.5]], [[2.5, 4.5]]]
                },
                {
                    'a': [[2], [-3], [0]],
                    'b': [[2.5], [0], [1]],
                    'test_data': [[2.2], [-2], [0.7]]
                },
            ],
            scipy_arg_fn=lambda a, b: ((), {
                "loc": np.array(a),
                "scale": np.array(b) - np.array(a)
            })),
    Fixture(pyro_dist=(dist.exponential, Exponential),
            scipy_dist=sp.expon,
            examples=[
                {