Exemple #1
0
    def setUp(self):
        self.mu1 = np.array([0.0])
        self.cov1 = np.eye(1)
        self.mu2 = np.array([1.0])
        self.cov2 = np.eye(1) * 2

        self.gaussian1 = GaussianDummy(mean=self.mu1,
                                       cov=self.cov1,
                                       ndim_x=2,
                                       ndim_y=1)
        self.gaussian2 = GaussianDummy(mean=self.mu2,
                                       cov=self.cov2,
                                       ndim_x=2,
                                       ndim_y=1)

        self.mu3 = np.array([1.6, -7.0])
        self.cov3 = np.array([[2.0, 0.5], [0.5, 4.5]])
        self.mu4 = np.array([1.0, -5.0])
        self.cov4 = np.eye(2) * 2

        self.gaussian3 = GaussianDummy(mean=self.mu3,
                                       cov=self.cov3,
                                       ndim_x=2,
                                       ndim_y=2)
        self.gaussian4 = GaussianDummy(mean=self.mu4,
                                       cov=self.cov4,
                                       ndim_x=2,
                                       ndim_y=2)
Exemple #2
0
    def test_covariance1(self):
        # prepare estimator dummy
        mu = np.array([-1])
        sigma = np.array([[0.1]])
        est = GaussianDummy(mean=mu, cov=sigma, ndim_x=2, ndim_y=1)
        est.fit(None, None)

        cov_est = est.covariance(x_cond=np.array([[0.5, 2]]))
        self.assertAlmostEqual(cov_est[0][0][0], sigma[0][0], places=2)
Exemple #3
0
    def test_covariance2(self):
        # prepare estimator dummy
        mu = np.array([0, 1])
        sigma = np.array([[1, -0.2], [-0.2, 2]])
        est = GaussianDummy(mean=mu,
                            cov=sigma,
                            ndim_x=2,
                            ndim_y=2,
                            can_sample=False)
        est.fit(None, None)

        cov_est = est.covariance(x_cond=np.array([[0, 1]]))
        self.assertAlmostEqual(cov_est[0][0][0], sigma[0][0], places=2)
        self.assertAlmostEqual(cov_est[0][1][0], sigma[1][0], places=2)
Exemple #4
0
    def test_std2(self):
        # prepare estimator dummy
        mu = np.array([14])
        sigma = np.array([[0.1]])
        est = GaussianDummy(mean=mu,
                            cov=sigma,
                            ndim_x=1,
                            ndim_y=1,
                            can_sample=False)
        est.fit(None, None)

        std_est = est.std_(x_cond=np.array([[0.0], [1.0]]))
        self.assertAlmostEqual(std_est[0][0]**2, sigma[0][0], places=2)
        self.assertAlmostEqual(std_est[1][0]**2, sigma[0][0], places=2)
Exemple #5
0
    def test_std1(self):
        # prepare estimator dummy
        mu = np.array([0, 1])
        sigma = np.array([[1, -0.2], [-0.2, 2]])
        est = GaussianDummy(mean=mu,
                            cov=sigma,
                            ndim_x=2,
                            ndim_y=2,
                            can_sample=False)
        est.fit(None, None)

        std = est.std_(x_cond=np.array([[0, 1]]))
        self.assertAlmostEqual(std[0][0], np.sqrt(sigma[0][0]), places=2)
        self.assertAlmostEqual(std[0][1], np.sqrt(sigma[1][1]), places=2)
Exemple #6
0
    def test_mean_pdf(self):
        # prepare estimator dummy
        mu = np.array([0, 1])
        sigma = np.identity(n=2) * 1
        est = GaussianDummy(mean=mu,
                            cov=sigma,
                            ndim_x=2,
                            ndim_y=2,
                            can_sample=False)
        est.fit(None, None)

        mean_est = est.mean_(x_cond=np.array([[0, 1]]))
        self.assertAlmostEqual(mean_est[0][0], mu[0], places=2)
        self.assertAlmostEqual(mean_est[0][1], mu[1], places=2)
Exemple #7
0
    def test_mean_std(self):
        mu = np.array([0, 1])
        sigma = np.array([[1, -0.2], [-0.2, 2]])
        est = GaussianDummy(mean=mu,
                            cov=sigma,
                            ndim_x=2,
                            ndim_y=2,
                            can_sample=False)
        est.fit(None, None)

        mean_est, std_est = est.mean_std(x_cond=np.array([[0, 1]]))
        self.assertAlmostEqual(mean_est[0][0], mu[0], places=2)
        self.assertAlmostEqual(mean_est[0][1], mu[1], places=2)
        self.assertAlmostEqual(std_est[0][0]**2, sigma[0][0], places=2)
        self.assertAlmostEqual(std_est[0][1]**2, sigma[1][1], places=2)
Exemple #8
0
    def test_value_at_risk_cdf(self):
        for mu, sigma in [(-2, 0.5), (0.4, 0.01), (22, 3)]:
            # prepare estimator dummy
            mu1 = np.array([mu])
            sigma1 = np.identity(n=1) * sigma
            est = GaussianDummy(mean=mu1,
                                cov=sigma1**2,
                                ndim_x=1,
                                ndim_y=1,
                                has_cdf=True)
            est.fit(None, None)

            alpha = 0.05
            VaR_est = est.value_at_risk(x_cond=np.array([[0], [1]]),
                                        alpha=alpha)
            VaR_true = norm.ppf(alpha, loc=mu, scale=sigma)
            self.assertAlmostEqual(VaR_est[0], VaR_true, places=2)
            self.assertAlmostEqual(VaR_est[1], VaR_true, places=2)
Exemple #9
0
    def test_conditional_value_at_risk_mc(self):
        for mu, sigma, alpha in [(1, 1, 0.05), (0.4, 0.1, 0.02),
                                 (0.1, 2, 0.01)]:
            # prepare estimator dummy
            mu1 = np.array([mu])
            sigma1 = np.identity(n=1) * sigma
            est = GaussianDummy(mean=mu1,
                                cov=sigma1**2,
                                ndim_x=1,
                                ndim_y=1,
                                has_pdf=True)
            est.fit(None, None)

            CVaR_true = mu - sigma / alpha * norm.pdf(norm.ppf(alpha))
            CVaR_est = est.conditional_value_at_risk(x_cond=np.array([[0],
                                                                      [1]]),
                                                     alpha=alpha)

            print("CVaR True (%.2f, %.2f):" % (mu, sigma), CVaR_true)
            print("CVaR_est (%.2f, %.2f):" % (mu, sigma), CVaR_est)
            print("VaR (%.2f, %.2f):" % (mu, sigma),
                  est.value_at_risk(x_cond=np.array([[0], [1]]), alpha=alpha))

            self.assertAlmostEqual(CVaR_est[0], CVaR_true, places=2)
            self.assertAlmostEqual(CVaR_est[1], CVaR_true, places=2)
Exemple #10
0
    def test_conditional_value_at_risk_sample(self):
        # prepare estimator dummy
        for mu, sigma in [(-6, 0.25), (0.4, 0.1), (22, 3)]:
            mu1 = np.array([mu])
            sigma1 = np.identity(n=1) * sigma
            est = GaussianDummy(mean=mu1,
                                cov=sigma1**2,
                                ndim_x=1,
                                ndim_y=1,
                                has_pdf=False)
            est.fit(None, None)

            alpha = 0.02

            CVaR_true = mu - sigma / alpha * norm.pdf(norm.ppf(alpha))
            CVaR_est = est.conditional_value_at_risk(x_cond=np.array([[0],
                                                                      [1]]),
                                                     alpha=alpha,
                                                     n_samples=2 * 10**6)

            self.assertAlmostEqual(CVaR_est[0], CVaR_true, places=2)
            self.assertAlmostEqual(CVaR_est[1], CVaR_true, places=2)
Exemple #11
0
    def test_kurtosis1(self):
        mu = np.array([-0.001])
        sigma = np.array([[0.02]])
        est = GaussianDummy(mean=mu,
                            cov=sigma,
                            ndim_x=2,
                            ndim_y=1,
                            can_sample=False)
        est.fit(None, None)

        kurt = est._kurtosis_mc(x_cond=np.array([[0, 1]]), n_samples=10**6)
        print("Kurtosis sample estimate:", kurt)
        self.assertAlmostEqual(kurt[0], 0, places=1)

        kurt = est._kurtosis_pdf(x_cond=np.array([[0, 1]]), n_samples=10**6)
        print("Kurtosis pdf estimate:", kurt)
        self.assertAlmostEqual(kurt[0], 0, places=1)
Exemple #12
0
    def test_skewness1(self):
        mu = np.array([-0.001])
        sigma = np.array([[0.02]])
        est = GaussianDummy(mean=mu,
                            cov=sigma,
                            ndim_x=2,
                            ndim_y=1,
                            can_sample=False)
        est.fit(None, None)

        skew = est._skewness_mc(x_cond=np.array([[0, 1]]))
        print("Skewness sample estimate:", skew)
        self.assertAlmostEqual(skew[0], 0, places=1)

        skew = est._skewness_pdf(x_cond=np.array([[0, 1]]))
        print("Skewness pdf estimate:", skew)
        self.assertAlmostEqual(skew[0], 0, places=1)