def setUp(self): self.n_frames = 4 self.env = TfEnv(DummyDiscrete2DEnv(random=False)) self.env_s = TfEnv( StackFrames( DummyDiscrete2DEnv(random=False), n_frames=self.n_frames)) self.width, self.height = self.env.observation_space.shape
def setup_method(self): self.width = 16 self.height = 16 self.env = DummyDiscrete2DEnv() self.env_r = Resize(DummyDiscrete2DEnv(), width=self.width, height=self.height)
def test_stack_frames_axis(self): env = StackFrames(DummyDiscrete2DEnv(random=False), n_frames=self.n_frames, axis=0) env.reset() obs, _, _, _ = env.step(1) assert obs.shape[0] == self.n_frames env = StackFrames(DummyDiscrete2DEnv(random=False), n_frames=self.n_frames, axis=2) env.reset() obs, _, _, _ = env.step(1) assert obs.shape[2] == self.n_frames
def test_baseline(self): """Test the baseline initialization.""" box_env = TfEnv(DummyBoxEnv()) deterministic_mlp_baseline = DeterministicMLPBaseline(env_spec=box_env) gaussian_mlp_baseline = GaussianMLPBaseline(env_spec=box_env) discrete_env = TfEnv(Resize(DummyDiscrete2DEnv(), width=64, height=64)) gaussian_conv_baseline = GaussianConvBaseline( env_spec=discrete_env, regressor_args=dict( conv_filters=[32, 32], conv_filter_sizes=[1, 1], conv_strides=[1, 1], conv_pads=["VALID", "VALID"], hidden_sizes=(32, 32))) self.sess.run(tf.global_variables_initializer()) deterministic_mlp_baseline.get_param_values(trainable=True) gaussian_mlp_baseline.get_param_values(trainable=True) gaussian_conv_baseline.get_param_values(trainable=True)
def setUp(self): self.width = 16 self.height = 16 self.env = TfEnv(DummyDiscrete2DEnv()) self.env_r = TfEnv( Resize(DummyDiscrete2DEnv(), width=self.width, height=self.height))
def setup_method(self): self.n_frames = 4 self.env = DummyDiscrete2DEnv(random=False) self.env_s = StackFrames(DummyDiscrete2DEnv(random=False), n_frames=self.n_frames) self.width, self.height = self.env.observation_space.shape
def test_invalid_axis_raises_error(self): with pytest.raises(ValueError): StackFrames(DummyDiscrete2DEnv(random=False), n_frames=self.n_frames, axis=5)