Exemple #1
0
 def test_get_column_map_features_changes_cols(self):
     sk = SklearnTransformerMock()
     sk.features_ = [1]
     t = r.SklearnColumnsWrapper(sk)
     t.cols = ["amount", "color"]
     t.get_column_mapping()
     self.assertListEqual(t.cols, ["color"])
Exemple #2
0
 def test_get_column_map_features(self):
     sk = SklearnTransformerMock()
     sk.features_ = [1]
     t = r.SklearnColumnsWrapper(sk)
     t.cols = ["amount", "color"]
     d = t.get_column_mapping()
     d_expected = {"color": "color"}
     self.assertDictEqual(d, d_expected)
Exemple #3
0
 def test_fit(self):
     sk = SklearnTransformerMock()
     sk.fit = MagicMock()
     t = r.SklearnFitOneWrapper(sk, "price", "amount")
     df_out = t.fit(create_df_all())
     a = np.array([1.5, 1, 2.5, 2, 3.5, 3]).reshape(-1, 1)
     a_out = sk.fit.call_args_list[0][0][0]
     self.assertEqual(a.shape, a_out.shape)
     # flatten() is not really needed.
     self.assertListEqual(list(a.flatten()), list(a_out.flatten()))
Exemple #4
0
 def _test_get_column_map_features_name(self, col_format, expected):
     sk = SklearnTransformerMock()
     sk.get_feature_names = MagicMock(return_value=["0_blue", "0_red"])
     if col_format is not None:
         t = r.SklearnColumnsWrapper(sk, col_format=col_format)
     else:
         t = r.SklearnColumnsWrapper(sk)
     t.cols = ["color"]
     d = t.get_column_mapping()
     d_expected = {"color": tuple(expected)}
     self.assertDictEqual(d, d_expected)
Exemple #5
0
 def test_fit_transform_features_name_result(self):
     sk = SklearnTransformerMock()
     sk.get_feature_names = MagicMock(return_value=["0_blue", "0_red"])
     return_value = np.array([[1, 2, 3], [3, 2, 1]]).T
     sk.transform = MagicMock(return_value=return_value)
     t = r.SklearnColumnsWrapper(sk, "color")
     df_out = t.fit_transform(create_df_all())
     df_expected = pd.DataFrame({
         "color=blue": [1, 2, 3],
         "color=red": [3, 2, 1],
         "price": [1.5, 2.5, 3.5],
         "amount": [1, 2, 3]
     })
     sk.transform.assert_called_once()
     self.assertTrue(df_out.equals(df_expected))
Exemple #6
0
    def test_get_column_map_features_name_mix(self):
        """One transformer with get_feature_names and other without. """

        sk1 = SklearnTransformerMock()
        return_value = np.array(["0_blue", "0_red"])
        sk1.get_feature_names = MagicMock(return_value=return_value)
        sk2 = SklearnTransformerMock()
        t = r.SklearnColumnWrapper(None)
        t.transformers = {"color": sk1, "amount": sk2}
        t.cols = ["color", "amount"]
        d = t.get_column_mapping()
        d_expected = {
            "color": tuple(["color=blue", "color=red"]),
            "amount": "amount"
        }
        self.assertDictEqual(d, d_expected)
Exemple #7
0
 def test_fit_transform(self):
     sk = SklearnTransformerMock()
     t = r.SklearnColumnWrapper(sk)
     t.fit_transform(create_df_cat())
     # Original transformer should not be fitted, only copies.
     self.assertEqual(sk.n_fit, 0)
     self.assertTrue("color" in t.transformers)
     self.assertEqual(t.transformers["color"].n_fit, 1)
     self.assertEqual(t.transformers["color"].n_transform, 1)
Exemple #8
0
 def _test_get_column_map_features_selected(self, selected, features):
     sk1 = SklearnTransformerMock()
     if features:
         sk1.features_ = [0] if selected else []
     sk2 = SklearnTransformerMock()
     sk2.features_ = [0]
     t = r.SklearnColumnWrapper(None)
     t.transformers = {"amount": sk1, "color": sk2}
     t.cols = ["amount", "color"]
     t.get_column_mapping()
     cols_expected = ["amount", "color"] if selected else ["color"]
     self.assertListEqual(t.cols, cols_expected)