Exemple #1
0
def test_bad_table_spec_save_tables():
    ref_data = get_parquet_test_data("faros-internal.parquet", 666)
    target_data = get_parquet_test_data("faros-internal.parquet", 667)
    reference_signal, target_signal = "Internal", "Faros"
    sources = {
        reference_signal: {"data": ref_data, "ref_column": "ACCELERATION_Z"},
        target_signal: {"data": target_data, "ref_column": "ACCELERATION_Z"},
    }
    extractor = ShakeExtractor()
    extractor.start_window_length = pd.Timedelta(seconds=17)
    extractor.end_window_length = pd.Timedelta(seconds=10)
    extractor.min_length = 3
    extractor.threshold = 0.19

    synchronizer = jointly.Synchronizer(sources, reference_signal, extractor)

    with tempfile.TemporaryDirectory() as tmp_dir:
        with pytest.raises(ValueError):
            synchronizer.save_data(
                tmp_dir, tables={"N/A": {"Faros": ["N/A"]}}, save_total_table=False
            )
        with pytest.raises(ValueError):
            synchronizer.save_data(
                tmp_dir,
                tables={"N/A": {"N/A": ["ACCELERATION_Y"]}},
                save_total_table=False,
            )
Exemple #2
0
def test_happy_path_faros_internal():
    ref_data = get_parquet_test_data("faros-internal.parquet", 666)
    target_data = get_parquet_test_data("faros-internal.parquet", 667)
    reference_signal, target_signal = "Internal", "Faros"
    sources = {
        reference_signal: {"data": ref_data, "ref_column": "ACCELERATION_Z"},
        target_signal: {"data": target_data, "ref_column": "ACCELERATION_Z"},
    }
    extractor = ShakeExtractor()
    extractor.start_window_length = pd.Timedelta(seconds=17)
    extractor.end_window_length = pd.Timedelta(seconds=10)
    extractor.min_length = 3
    extractor.threshold = 0.19

    synchronizer = jointly.Synchronizer(sources, reference_signal, extractor)
    sync_result = synchronizer.get_sync_params()

    assert (
        sync_result[reference_signal]["timeshift"] is None
    ), "Should not have timeshift for reference signal"
    assert (
        sync_result[reference_signal]["stretch_factor"] == 1
    ), "Should not stretch reference signal"

    assert sync_result[target_signal]["timeshift"] == pd.Timedelta(
        "-1 days +23:59:59.070000"
    ), "Should have timeshift of 0 for equal signal"
    assert (
        sync_result[target_signal]["stretch_factor"] == 1.0506424792139077
    ), "Should have stretching factor of 1 for equal signal"
Exemple #3
0
def test_plot_segments(mocked_show):
    base_data = get_parquet_test_data("test-data.parquet")
    reference_signal, target_signal = "A", "B"
    sources = {
        reference_signal: {
            "data": base_data.copy(),
            "ref_column": "ACCELERATION_Z"
        },
        target_signal: {
            "data": base_data,
            "ref_column": "ACCELERATION_Z"
        },
    }
    extractor = ShakeExtractor()
    extractor.start_window_length = pd.Timedelta(seconds=5)
    extractor.end_window_length = pd.Timedelta(seconds=3)
    extractor.min_length = 3
    extractor.threshold = 0.5

    synchronizer = Synchronizer(sources, reference_signal, extractor)
    segments = extractor.get_segments(
        get_equidistant_signals(synchronizer.ref_signals,
                                synchronizer.sampling_freq))

    with pytest.raises(ValueError):
        plot_segments(synchronizer.ref_signals, segments)

    plot_segments(synchronizer.ref_signals, segments, together=True)
    plot_segments(synchronizer.ref_signals, segments, separate=True)
Exemple #4
0
def test_happy_path_shifted_data():
    base_data = get_parquet_test_data("test-data.parquet")
    reference_signal, target_signal = "A", "B"
    target_df = base_data.shift(-22, freq="100ms")

    sources = {
        reference_signal: {"data": base_data.copy(), "ref_column": "ACCELERATION_Z"},
        target_signal: {"data": target_df, "ref_column": "ACCELERATION_Z"},
    }
    extractor = ShakeExtractor()
    extractor.start_window_length = pd.Timedelta(seconds=5)
    extractor.end_window_length = pd.Timedelta(seconds=3)
    extractor.min_length = 3
    extractor.threshold = 0.5

    synchronizer = jointly.Synchronizer(sources, reference_signal, extractor)
    sync_result = synchronizer.get_sync_params()

    assert (
        sync_result[reference_signal]["timeshift"] is None
    ), "Should not have timeshift for reference signal"
    assert (
        sync_result[reference_signal]["stretch_factor"] == 1
    ), "Should not stretch reference signal"

    assert sync_result[target_signal]["timeshift"] == pd.Timedelta(
        "0 days 00:00:02.197549725"
    ), "Should have timeshift of 0 for equal signal"
    assert (
        sync_result[target_signal]["stretch_factor"] == 1
    ), "Should have stretching factor of 1 for equal signal"
Exemple #5
0
def test_happy_path_save_tables():
    ref_data = get_parquet_test_data("faros-internal.parquet", 666)
    target_data = get_parquet_test_data("faros-internal.parquet", 667)
    reference_signal, target_signal = "Internal", "Faros"
    sources = {
        reference_signal: {"data": ref_data, "ref_column": "ACCELERATION_Z"},
        target_signal: {"data": target_data, "ref_column": "ACCELERATION_Z"},
    }
    extractor = ShakeExtractor()
    extractor.start_window_length = pd.Timedelta(seconds=17)
    extractor.end_window_length = pd.Timedelta(seconds=10)
    extractor.min_length = 3
    extractor.threshold = 0.19

    synchronizer = jointly.Synchronizer(sources, reference_signal, extractor)

    acc_columns = ["ACCELERATION_X", "ACCELERATION_Y", "ACCELERATION_Z"]
    with tempfile.TemporaryDirectory() as tmp_dir:
        tables = {
            "ACC": {"Faros": acc_columns, "Internal": acc_columns},
            "ECG": {"Faros": ["ECG"]},
        }
        synchronizer.save_data(tmp_dir, tables=tables, save_total_table=False)
        for file in ["ACC", "ECG", "SYNC"]:
            file_path = os.path.join(tmp_dir, f"{file}.csv")

            assert os.path.isfile(file_path), f"{file_path} should exist"
            df = pd.read_csv(file_path)

            if file == "ACC":
                assert len(df) == 4115, "Should have saved all acc values"
                assert "timestamp" in df.columns, "Should have saved timestamp column"
                for col in acc_columns:
                    for device in tables["ACC"]:
                        assert (
                            f"{device}_{col}" in df.columns
                        ), f"Should have saved {device}_{col}"
            elif file == "ECG":
                assert len(df) == 15100, "Should have saved all ecg values"
                assert "timestamp" in df.columns, "Should have saved timestamp column"
            elif file == "SYNC":
                for source in ["Faros", "Internal"]:
                    assert (
                        source in df.columns
                    ), f"Should have saved {source} in SYNC.csv"
                assert "Unnamed: 0" in df.columns, "Should have saved index column"
Exemple #6
0
def test_infer_freq():
    test_data = get_parquet_test_data("faros-internal.parquet", 667)

    assert infer_freq(test_data["ECG"]) == 500, "ECG should be 500 Hz"
    assert infer_freq(
        test_data["ACCELERATION_X"]) == 100, "Acc. should be 100 Hz"
    assert infer_freq(
        test_data["ACCELERATION_Y"]) == 100, "Acc. should be 100 Hz"
    assert infer_freq(
        test_data["ACCELERATION_Z"]) == 100, "Acc. should be 100 Hz"
Exemple #7
0
def test_get_equidistant_signals():
    test_data = get_parquet_test_data("faros-internal.parquet", 667)

    result = get_equidistant_signals(test_data, frequency=1_000)
    for col in result.columns:
        assert infer_freq(result[col]) == 1000, f"{col} should have 1000 Hz"

    result = get_equidistant_signals(test_data, frequency=500)
    for col in result.columns:
        assert infer_freq(result[col]) == 500, f"{col} should have 500 Hz"

    result = get_equidistant_signals(test_data, frequency=1)
    for col in result.columns:
        assert infer_freq(result[col]) == 1, f"{col} should have 1 Hz"
Exemple #8
0
def test_plot_reference_columns(mocked_show):
    base_data = get_parquet_test_data("test-data.parquet")
    reference_signal, target_signal = "A", "B"
    sources = {
        reference_signal: {
            "data": base_data.copy(),
            "ref_column": "ACCELERATION_Z"
        },
        target_signal: {
            "data": base_data,
            "ref_column": "ACCELERATION_Z"
        },
    }
    plot_reference_columns(sources)
Exemple #9
0
def test_happy_path_save_total_table():
    ref_data = get_parquet_test_data("faros-internal.parquet", 666)
    target_data = get_parquet_test_data("faros-internal.parquet", 667)
    reference_signal, target_signal = "Internal", "Faros"
    sources = {
        reference_signal: {"data": ref_data, "ref_column": "ACCELERATION_Z"},
        target_signal: {"data": target_data, "ref_column": "ACCELERATION_Z"},
    }
    extractor = ShakeExtractor()
    extractor.start_window_length = pd.Timedelta(seconds=17)
    extractor.end_window_length = pd.Timedelta(seconds=10)
    extractor.min_length = 3
    extractor.threshold = 0.19

    synchronizer = jointly.Synchronizer(sources, reference_signal, extractor)
    with tempfile.TemporaryDirectory() as tmp_dir:
        synchronizer.save_data(tmp_dir, tables=None, save_total_table=True)
        file_path = os.path.join(tmp_dir, "TOTAL.csv")
        assert os.path.isfile(file_path), f"{file_path} should exist"

        df = pd.read_csv(file_path)
        assert len(df.columns) == 21, "Should save all sensors from internal and faros"
        assert len(df) == 18518, "Should create exact number of synced result items"
Exemple #10
0
def test_happy_path_save_pickles():
    ref_data = get_parquet_test_data("faros-internal.parquet", 666)
    target_data = get_parquet_test_data("faros-internal.parquet", 667)
    reference_signal, target_signal = "Internal", "Faros"
    sources = {
        reference_signal: {"data": ref_data, "ref_column": "ACCELERATION_Z"},
        target_signal: {"data": target_data, "ref_column": "ACCELERATION_Z"},
    }
    extractor = ShakeExtractor()
    extractor.start_window_length = pd.Timedelta(seconds=17)
    extractor.end_window_length = pd.Timedelta(seconds=10)
    extractor.min_length = 3
    extractor.threshold = 0.19

    synchronizer = jointly.Synchronizer(sources, reference_signal, extractor)

    with tempfile.TemporaryDirectory() as tmp_dir:
        synchronizer.save_pickles(tmp_dir)
        synced_data = synchronizer.get_synced_data()

        for signal, signal_df in synced_data.items():
            pickle_path = os.path.join(tmp_dir, f"{signal.upper()}.PICKLE")
            assert os.path.isfile(pickle_path)
            assert pd.read_pickle(pickle_path).equals(signal_df)
Exemple #11
0
def test_get_max_ref_frequency():
    test_data = get_parquet_test_data("faros-internal.parquet", 667)

    assert get_max_ref_frequency(test_data) == 500, "max(all) should be 500 Hz"
    assert (get_max_ref_frequency(
        test_data[["ACCELERATION_X",
                   "ACCELERATION_Y"]]) == 100), "max(acc) should be 100 Hz"
    assert (get_max_ref_frequency(
        test_data["ACCELERATION_Y"].to_frame()) == 100
            ), "max(acc) should be 100 Hz"

    with pytest.raises(ValueError):
        get_max_ref_frequency(test_data["ACCELERATION_X"])

    with pytest.raises(ValueError):
        get_max_ref_frequency(pd.DataFrame())
Exemple #12
0
def test_window_length_error():
    base_data = get_parquet_test_data("test-data.parquet")
    reference_signal, target_signal = "A", "B"
    sources = {
        reference_signal: {
            "data": base_data.copy(),
            "ref_column": "ACCELERATION_Z"
        },
        target_signal: {
            "data": base_data,
            "ref_column": "ACCELERATION_Z"
        },
    }
    extractor = ShakeExtractor()
    extractor.start_window_length = pd.Timedelta(seconds=50)
    extractor.end_window_length = pd.Timedelta(seconds=3)
    extractor.min_length = 3
    extractor.threshold = 0.5

    with pytest.raises(BadWindowException):
        Synchronizer(sources, reference_signal, extractor).get_sync_params()