def test_partial() -> None: """ Add another table to existing repo using partial apply API. Make sure both the table applied via CLI apply and the new table are passing RW test. """ runner = CliRunner() with runner.local_repo(get_example_repo("example_feature_repo_1.py"), "bigquery") as store: driver_locations_source = BigQuerySource( table="feast-oss.public.drivers", timestamp_field="event_timestamp", created_timestamp_column="created_timestamp", ) driver_locations_100 = FeatureView( name="driver_locations_100", entities=["driver"], ttl=timedelta(days=1), schema=[ Field(name="lat", dtype=Float32), Field(name="lon", dtype=String), Field(name="name", dtype=String), ], online=True, batch_source=driver_locations_source, tags={}, ) store.apply([driver_locations_100]) basic_rw_test(store, view_name="driver_locations") basic_rw_test(store, view_name="driver_locations_100")
def test_partial() -> None: """ Add another table to existing repo using partial apply API. Make sure both the table applied via CLI apply and the new table are passing RW test. """ runner = CliRunner() with runner.local_repo(get_example_repo("example_feature_repo_1.py"), "bigquery") as store: driver_locations_source = BigQuerySource( table_ref="feast-oss.public.drivers", event_timestamp_column="event_timestamp", created_timestamp_column="created_timestamp", ) driver_locations_100 = FeatureView( name="driver_locations_100", entities=["driver"], ttl=Duration(seconds=86400 * 1), features=[ Feature(name="lat", dtype=ValueType.FLOAT), Feature(name="lon", dtype=ValueType.STRING), Feature(name="name", dtype=ValueType.STRING), ], online=True, batch_source=driver_locations_source, tags={}, ) store.apply([driver_locations_100]) basic_rw_test(store, view_name="driver_locations") basic_rw_test(store, view_name="driver_locations_100")
def test_feature_service_read() -> None: """ Read feature values from the FeatureStore using a FeatureService. """ runner = CliRunner() with runner.local_repo(get_example_repo("example_feature_repo_1.py"), "bigquery") as store: basic_rw_test( store, view_name="driver_locations", feature_service_name="driver_locations_service", )
def test_read_pre_applied() -> None: """ Read feature values from the FeatureStore using a FeatureService. """ runner = CliRunner() with runner.local_repo(get_example_repo("example_feature_repo_1.py"), "bigquery") as store: assert len(store.list_feature_services()) == 1 fs = store.get_feature_service("driver_locations_service") assert len(fs.tags) == 1 assert fs.tags["release"] == "production" fv = store.get_feature_view("driver_locations") fs = FeatureService(name="new_feature_service", features=[fv[["lon"]]]) store.apply([fs]) assert len(store.list_feature_services()) == 2 store.get_feature_service("new_feature_service")
def test_e2e_local() -> None: """ A more comprehensive than "basic" test, using local provider. 1. Create a repo. 2. Apply 3. Ingest some data to online store from parquet 4. Read from the online store to make sure it made it there. """ runner = CliRunner() with tempfile.TemporaryDirectory() as data_dir: # Generate some test data in parquet format. end_date = datetime.now().replace(microsecond=0, second=0, minute=0) start_date = end_date - timedelta(days=15) driver_entities = [1001, 1002, 1003, 1004, 1005] driver_df = driver_data.create_driver_hourly_stats_df( driver_entities, start_date, end_date ) driver_stats_path = os.path.join(data_dir, "driver_stats.parquet") driver_df.to_parquet(path=driver_stats_path, allow_truncated_timestamps=True) global_df = driver_data.create_global_daily_stats_df(start_date, end_date) global_stats_path = os.path.join(data_dir, "global_stats.parquet") global_df.to_parquet(path=global_stats_path, allow_truncated_timestamps=True) # Note that runner takes care of running apply/teardown for us here. # We patch python code in example_feature_repo_2.py to set the path to Parquet files. with runner.local_repo( get_example_repo("example_feature_repo_2.py") .replace("%PARQUET_PATH%", driver_stats_path) .replace("%PARQUET_PATH_GLOBAL%", global_stats_path), "file", ) as store: assert store.repo_path is not None # feast materialize r = runner.run( [ "materialize", start_date.isoformat(), (end_date - timedelta(days=7)).isoformat(), ], cwd=Path(store.repo_path), ) assert r.returncode == 0 _assert_online_features(store, driver_df, end_date - timedelta(days=7)) # feast materialize-incremental r = runner.run( ["materialize-incremental", end_date.isoformat()], cwd=Path(store.repo_path), ) assert r.returncode == 0 _assert_online_features(store, driver_df, end_date) # Test a failure case when the parquet file doesn't include a join key with runner.local_repo( get_example_repo("example_feature_repo_with_entity_join_key.py").replace( "%PARQUET_PATH%", driver_stats_path ), "file", ) as store: assert store.repo_path is not None # feast materialize returncode, output = runner.run_with_output( [ "materialize", start_date.isoformat(), (end_date - timedelta(days=7)).isoformat(), ], cwd=Path(store.repo_path), ) assert returncode != 0 assert "feast.errors.FeastJoinKeysDuringMaterialization" in str(output)
def test_online_to_df(): """ Test dataframe conversion. Make sure the response columns and rows are the same order as the request. """ driver_ids = [1, 2, 3] customer_ids = [4, 5, 6] name = "foo" lon_multiply = 1.0 lat_multiply = 0.1 age_multiply = 10 avg_order_day_multiply = 1.0 runner = CliRunner() with runner.local_repo(get_example_repo("example_feature_repo_1.py"), "bigquery") as store: # Write three tables to online store driver_locations_fv = store.get_feature_view(name="driver_locations") customer_profile_fv = store.get_feature_view(name="customer_profile") customer_driver_combined_fv = store.get_feature_view( name="customer_driver_combined") provider = store._get_provider() for (d, c) in zip(driver_ids, customer_ids): """ driver table: lon lat 1 1.0 0.1 2 2.0 0.2 3 3.0 0.3 """ driver_key = EntityKeyProto( join_keys=["driver_id"], entity_values=[ValueProto(int64_val=d)]) provider.online_write_batch( config=store.config, table=driver_locations_fv, data=[( driver_key, { "lat": ValueProto(double_val=d * lat_multiply), "lon": ValueProto(string_val=str(d * lon_multiply)), }, datetime.utcnow(), datetime.utcnow(), )], progress=None, ) """ customer table customer avg_orders_day name age 4 4.0 foo4 40 5 5.0 foo5 50 6 6.0 foo6 60 """ customer_key = EntityKeyProto( join_keys=["customer_id"], entity_values=[ValueProto(string_val=str(c))]) provider.online_write_batch( config=store.config, table=customer_profile_fv, data=[( customer_key, { "avg_orders_day": ValueProto(float_val=c * avg_order_day_multiply), "name": ValueProto(string_val=name + str(c)), "age": ValueProto(int64_val=c * age_multiply), }, datetime.utcnow(), datetime.utcnow(), )], progress=None, ) """ customer_driver_combined table customer driver trips 4 1 4 5 2 10 6 3 18 """ combo_keys = EntityKeyProto( join_keys=["customer_id", "driver_id"], entity_values=[ ValueProto(string_val=str(c)), ValueProto(int64_val=d) ], ) provider.online_write_batch( config=store.config, table=customer_driver_combined_fv, data=[( combo_keys, { "trips": ValueProto(int64_val=c * d) }, datetime.utcnow(), datetime.utcnow(), )], progress=None, ) # Get online features in dataframe result_df = store.get_online_features( features=[ "driver_locations:lon", "driver_locations:lat", "customer_profile:avg_orders_day", "customer_profile:name", "customer_profile:age", "customer_driver_combined:trips", ], # Reverse the row order entity_rows=[{ "driver_id": d, "customer_id": c } for (d, c) in zip(reversed(driver_ids), reversed(customer_ids))], ).to_df() """ Construct the expected dataframe with reversed row order like so: driver customer lon lat avg_orders_day name age trips 3 6 3.0 0.3 6.0 foo6 60 18 2 5 2.0 0.2 5.0 foo5 50 10 1 4 1.0 0.1 4.0 foo4 40 4 """ df_dict = { "driver_id": driver_ids, "customer_id": [str(c) for c in customer_ids], "lon": [str(d * lon_multiply) for d in driver_ids], "lat": [d * lat_multiply for d in driver_ids], "avg_orders_day": [c * avg_order_day_multiply for c in customer_ids], "name": [name + str(c) for c in customer_ids], "age": [c * age_multiply for c in customer_ids], "trips": [d * c for (d, c) in zip(driver_ids, customer_ids)], } # Requested column order ordered_column = [ "driver_id", "customer_id", "lon", "lat", "avg_orders_day", "name", "age", "trips", ] expected_df = pd.DataFrame( {k: reversed(v) for (k, v) in df_dict.items()}) assert_frame_equal(result_df[ordered_column], expected_df)
def test_online() -> None: """ Test reading from the online store in local mode. """ runner = CliRunner() with runner.local_repo(get_example_repo("example_feature_repo_1.py"), "bigquery") as store: # Write some data to two tables driver_locations_fv = store.get_feature_view(name="driver_locations") customer_profile_fv = store.get_feature_view(name="customer_profile") customer_driver_combined_fv = store.get_feature_view( name="customer_driver_combined") provider = store._get_provider() driver_key = EntityKeyProto(join_keys=["driver_id"], entity_values=[ValueProto(int64_val=1)]) provider.online_write_batch( config=store.config, table=driver_locations_fv, data=[( driver_key, { "lat": ValueProto(double_val=0.1), "lon": ValueProto(string_val="1.0"), }, datetime.utcnow(), datetime.utcnow(), )], progress=None, ) customer_key = EntityKeyProto( join_keys=["customer_id"], entity_values=[ValueProto(string_val="5")]) provider.online_write_batch( config=store.config, table=customer_profile_fv, data=[( customer_key, { "avg_orders_day": ValueProto(float_val=1.0), "name": ValueProto(string_val="John"), "age": ValueProto(int64_val=3), }, datetime.utcnow(), datetime.utcnow(), )], progress=None, ) customer_key = EntityKeyProto( join_keys=["customer_id", "driver_id"], entity_values=[ ValueProto(string_val="5"), ValueProto(int64_val=1) ], ) provider.online_write_batch( config=store.config, table=customer_driver_combined_fv, data=[( customer_key, { "trips": ValueProto(int64_val=7) }, datetime.utcnow(), datetime.utcnow(), )], progress=None, ) # Retrieve two features using two keys, one valid one non-existing result = store.get_online_features( features=[ "driver_locations:lon", "customer_profile:avg_orders_day", "customer_profile:name", "customer_driver_combined:trips", ], entity_rows=[ { "driver_id": 1, "customer_id": "5" }, { "driver_id": 1, "customer_id": 5 }, ], full_feature_names=False, ).to_dict() assert "lon" in result assert "avg_orders_day" in result assert "name" in result assert result["driver_id"] == [1, 1] assert result["customer_id"] == ["5", "5"] assert result["lon"] == ["1.0", "1.0"] assert result["avg_orders_day"] == [1.0, 1.0] assert result["name"] == ["John", "John"] assert result["trips"] == [7, 7] # Ensure features are still in result when keys not found result = store.get_online_features( features=["customer_driver_combined:trips"], entity_rows=[{ "driver_id": 0, "customer_id": 0 }], full_feature_names=False, ).to_dict() assert "trips" in result # invalid table reference with pytest.raises(FeatureViewNotFoundException): store.get_online_features( features=["driver_locations_bad:lon"], entity_rows=[{ "driver_id": 1 }], full_feature_names=False, ) # Create new FeatureStore object with fast cache invalidation cache_ttl = 1 fs_fast_ttl = FeatureStore(config=RepoConfig( registry=RegistryConfig(path=store.config.registry, cache_ttl_seconds=cache_ttl), online_store=store.config.online_store, project=store.project, provider=store.config.provider, )) # Should download the registry and cache it permanently (or until manually refreshed) result = fs_fast_ttl.get_online_features( features=[ "driver_locations:lon", "customer_profile:avg_orders_day", "customer_profile:name", "customer_driver_combined:trips", ], entity_rows=[{ "driver_id": 1, "customer_id": 5 }], full_feature_names=False, ).to_dict() assert result["lon"] == ["1.0"] assert result["trips"] == [7] # Rename the registry.db so that it cant be used for refreshes os.rename(store.config.registry, store.config.registry + "_fake") # Wait for registry to expire time.sleep(cache_ttl) # Will try to reload registry because it has expired (it will fail because we deleted the actual registry file) with pytest.raises(FileNotFoundError): fs_fast_ttl.get_online_features( features=[ "driver_locations:lon", "customer_profile:avg_orders_day", "customer_profile:name", "customer_driver_combined:trips", ], entity_rows=[{ "driver_id": 1, "customer_id": 5 }], full_feature_names=False, ).to_dict() # Restore registry.db so that we can see if it actually reloads registry os.rename(store.config.registry + "_fake", store.config.registry) # Test if registry is actually reloaded and whether results return result = fs_fast_ttl.get_online_features( features=[ "driver_locations:lon", "customer_profile:avg_orders_day", "customer_profile:name", "customer_driver_combined:trips", ], entity_rows=[{ "driver_id": 1, "customer_id": 5 }], full_feature_names=False, ).to_dict() assert result["lon"] == ["1.0"] assert result["trips"] == [7] # Create a registry with infinite cache (for users that want to manually refresh the registry) fs_infinite_ttl = FeatureStore(config=RepoConfig( registry=RegistryConfig(path=store.config.registry, cache_ttl_seconds=0), online_store=store.config.online_store, project=store.project, provider=store.config.provider, )) # Should return results (and fill the registry cache) result = fs_infinite_ttl.get_online_features( features=[ "driver_locations:lon", "customer_profile:avg_orders_day", "customer_profile:name", "customer_driver_combined:trips", ], entity_rows=[{ "driver_id": 1, "customer_id": 5 }], full_feature_names=False, ).to_dict() assert result["lon"] == ["1.0"] assert result["trips"] == [7] # Wait a bit so that an arbitrary TTL would take effect time.sleep(2) # Rename the registry.db so that it cant be used for refreshes os.rename(store.config.registry, store.config.registry + "_fake") # TTL is infinite so this method should use registry cache result = fs_infinite_ttl.get_online_features( features=[ "driver_locations:lon", "customer_profile:avg_orders_day", "customer_profile:name", "customer_driver_combined:trips", ], entity_rows=[{ "driver_id": 1, "customer_id": 5 }], full_feature_names=False, ).to_dict() assert result["lon"] == ["1.0"] assert result["trips"] == [7] # Force registry reload (should fail because file is missing) with pytest.raises(FileNotFoundError): fs_infinite_ttl.refresh_registry() # Restore registry.db so that teardown works os.rename(store.config.registry + "_fake", store.config.registry)