def test_cpu_restore_training(tmpdir):
    """Verify continue training session on CPU."""
    tutils.reset_seed()

    hparams = tutils.get_hparams()
    model = LightningTestModel(hparams)

    # logger file to get meta
    test_logger_version = 10
    logger = tutils.get_test_tube_logger(tmpdir, False, version=test_logger_version)

    trainer_options = dict(
        max_epochs=8,
        val_check_interval=0.50,
        val_percent_check=0.2,
        train_percent_check=0.2,
        logger=logger,
        checkpoint_callback=ModelCheckpoint(tmpdir, save_top_k=-1)
    )

    # fit model
    trainer = Trainer(**trainer_options)
    result = trainer.fit(model)
    real_global_epoch = trainer.current_epoch

    # traning complete
    assert result == 1, 'amp + ddp model failed to complete'

    # wipe-out trainer and model
    # retrain with not much data... this simulates picking training back up after slurm
    # we want to see if the weights come back correctly
    new_logger = tutils.get_test_tube_logger(tmpdir, False, version=test_logger_version)
    trainer_options = dict(
        max_epochs=2,
        val_check_interval=0.50,
        val_percent_check=0.2,
        train_percent_check=0.2,
        logger=new_logger,
        checkpoint_callback=ModelCheckpoint(tmpdir),
    )
    trainer = Trainer(**trainer_options)
    model = LightningTestModel(hparams)

    # set the epoch start hook so we can predict before the model does the full training
    def assert_good_acc():
        assert trainer.current_epoch == real_global_epoch
        assert trainer.current_epoch >= 0

        # if model and state loaded correctly, predictions will be good even though we
        # haven't trained with the new loaded model
        trainer.model.eval()
        for dataloader in trainer.get_val_dataloaders():
            tutils.run_prediction(dataloader, trainer.model)

    model.on_train_start = assert_good_acc

    # by calling fit again, we trigger training, loading weights from the cluster
    # and our hook to predict using current model before any more weight updates
    trainer.fit(model)
def test_running_test_without_val(tmpdir):
    """Verify `test()` works on a model with no `val_loader`."""
    tutils.reset_seed()

    class CurrentTestModel(LightningTestMixin, LightningTestModelBase):
        pass

    hparams = tutils.get_hparams()
    model = CurrentTestModel(hparams)

    # logger file to get meta
    logger = tutils.get_test_tube_logger(tmpdir, False)

    # logger file to get weights
    checkpoint = tutils.init_checkpoint_callback(logger)

    trainer_options = dict(show_progress_bar=False,
                           max_epochs=1,
                           train_percent_check=0.4,
                           val_percent_check=0.2,
                           test_percent_check=0.2,
                           checkpoint_callback=checkpoint,
                           logger=logger)

    # fit model
    trainer = Trainer(**trainer_options)
    result = trainer.fit(model)

    assert result == 1, 'training failed to complete'

    trainer.test()

    # test we have good test accuracy
    tutils.assert_ok_model_acc(trainer)
def test_running_test_pretrained_model(tmpdir):
    tutils.reset_seed()
    """Verify test() on pretrained model"""
    hparams = tutils.get_hparams()
    model = LightningTestModel(hparams)

    # logger file to get meta
    logger = tutils.get_test_tube_logger(tmpdir, False)

    # logger file to get weights
    checkpoint = tutils.init_checkpoint_callback(logger)

    trainer_options = dict(show_progress_bar=False,
                           max_num_epochs=4,
                           train_percent_check=0.4,
                           val_percent_check=0.2,
                           checkpoint_callback=checkpoint,
                           logger=logger)

    # fit model
    trainer = Trainer(**trainer_options)
    result = trainer.fit(model)

    # correct result and ok accuracy
    assert result == 1, 'training failed to complete'
    pretrained_model = tutils.load_model(logger.experiment,
                                         trainer.checkpoint_callback.filepath,
                                         module_class=LightningTestModel)

    new_trainer = Trainer(**trainer_options)
    new_trainer.test(pretrained_model)

    # test we have good test accuracy
    tutils.assert_ok_test_acc(new_trainer)
def test_ddp_sampler_error(tmpdir):
    """
    Make sure DDP + AMP work
    :return:
    """
    if not tutils.can_run_gpu_test():
        return

    tutils.reset_seed()
    tutils.set_random_master_port()

    hparams = tutils.get_hparams()
    model = LightningTestModel(hparams, force_remove_distributed_sampler=True)

    logger = tutils.get_test_tube_logger(tmpdir, True)

    trainer = Trainer(
        logger=logger,
        show_progress_bar=False,
        max_nb_epochs=1,
        gpus=[0, 1],
        distributed_backend='ddp',
        use_amp=True
    )

    with pytest.warns(UserWarning):
        trainer.get_dataloaders(model)
def test_early_stopping_cpu_model(tmpdir):
    """Test each of the trainer options."""
    tutils.reset_seed()

    stopping = EarlyStopping(monitor='val_loss', min_delta=0.1)
    trainer_options = dict(
        default_save_path=tmpdir,
        min_epochs=2,
        early_stop_callback=stopping,
        gradient_clip_val=1.0,
        overfit_pct=0.20,
        track_grad_norm=2,
        print_nan_grads=True,
        show_progress_bar=True,
        logger=tutils.get_test_tube_logger(tmpdir),
        train_percent_check=0.1,
        val_percent_check=0.1,
    )

    model, hparams = tutils.get_model()
    tutils.run_model_test(trainer_options,
                          model,
                          on_gpu=False,
                          early_stop=True)

    # test freeze on cpu
    model.freeze()
    model.unfreeze()
def test_testtube_pickle():
    """
    Verify that pickling a trainer containing a test tube logger works
    """
    tutils.reset_seed()

    hparams = tutils.get_hparams()
    model = LightningTestModel(hparams)

    save_dir = tutils.init_save_dir()

    logger = tutils.get_test_tube_logger(False)
    logger.log_hyperparams(hparams)
    logger.save()

    trainer_options = dict(max_nb_epochs=1,
                           train_percent_check=0.01,
                           logger=logger)

    trainer = Trainer(**trainer_options)
    pkl_bytes = pickle.dumps(trainer)
    trainer2 = pickle.loads(pkl_bytes)
    trainer2.logger.log_metrics({"acc": 1.0})

    tutils.clear_save_dir()
def test_running_test_after_fitting(tmpdir):
    """Verify test() on fitted model."""
    tutils.reset_seed()

    hparams = tutils.get_hparams()
    model = LightningTestModel(hparams)

    # logger file to get meta
    logger = tutils.get_test_tube_logger(tmpdir, False)

    # logger file to get weights
    checkpoint = tutils.init_checkpoint_callback(logger)

    trainer_options = dict(default_save_path=tmpdir,
                           show_progress_bar=False,
                           max_epochs=4,
                           train_percent_check=0.4,
                           val_percent_check=0.2,
                           test_percent_check=0.2,
                           checkpoint_callback=checkpoint,
                           logger=logger)

    # fit model
    trainer = Trainer(**trainer_options)
    result = trainer.fit(model)

    assert result == 1, 'training failed to complete'

    trainer.test()

    # test we have good test accuracy
    tutils.assert_ok_model_acc(trainer)
Exemple #8
0
def test_no_val_end_module(tmpdir):
    """Tests use case where trainer saves the model, and user loads it from tags independently."""
    tutils.reset_seed()

    class CurrentTestModel(LightningValidationStepMixin,
                           LightningTestModelBase):
        pass

    hparams = tutils.get_hparams()
    model = CurrentTestModel(hparams)

    # logger file to get meta
    logger = tutils.get_test_tube_logger(tmpdir, False)

    trainer_options = dict(max_epochs=1,
                           logger=logger,
                           checkpoint_callback=ModelCheckpoint(tmpdir))

    # fit model
    trainer = Trainer(**trainer_options)
    result = trainer.fit(model)

    # traning complete
    assert result == 1, 'amp + ddp model failed to complete'

    # save model
    new_weights_path = os.path.join(tmpdir, 'save_test.ckpt')
    trainer.save_checkpoint(new_weights_path)

    # load new model
    tags_path = tutils.get_data_path(logger, path_dir=tmpdir)
    tags_path = os.path.join(tags_path, 'meta_tags.csv')
    model_2 = LightningTestModel.load_from_metrics(
        weights_path=new_weights_path, tags_csv=tags_path)
    model_2.eval()
Exemple #9
0
def test_model_saving_loading():
    """
    Tests use case where trainer saves the model, and user loads it from tags independently
    :return:
    """
    tutils.reset_seed()

    hparams = tutils.get_hparams()
    model = LightningTestModel(hparams)

    save_dir = tutils.init_save_dir()

    # logger file to get meta
    logger = tutils.get_test_tube_logger(False)

    trainer_options = dict(
        max_nb_epochs=1,
        logger=logger,
        checkpoint_callback=ModelCheckpoint(save_dir)
    )

    # fit model
    trainer = Trainer(**trainer_options)
    result = trainer.fit(model)

    # traning complete
    assert result == 1, 'amp + ddp model failed to complete'

    # make a prediction
    for dataloader in model.test_dataloader():
        for batch in dataloader:
            break

    x, y = batch
    x = x.view(x.size(0), -1)

    # generate preds before saving model
    model.eval()
    pred_before_saving = model(x)

    # save model
    new_weights_path = os.path.join(save_dir, 'save_test.ckpt')
    trainer.save_checkpoint(new_weights_path)

    # load new model
    tags_path = logger.experiment.get_data_path(logger.experiment.name, logger.experiment.version)
    tags_path = os.path.join(tags_path, 'meta_tags.csv')
    model_2 = LightningTestModel.load_from_metrics(weights_path=new_weights_path,
                                                   tags_csv=tags_path)
    model_2.eval()

    # make prediction
    # assert that both predictions are the same
    new_pred = model_2(x)
    assert torch.all(torch.eq(pred_before_saving, new_pred)).item() == 1

    tutils.clear_save_dir()
Exemple #10
0
def test_running_test_pretrained_model_ddp():
    """Verify test() on pretrained model"""
    if not tutils.can_run_gpu_test():
        return

    tutils.reset_seed()
    tutils.set_random_master_port()

    hparams = tutils.get_hparams()
    model = LightningTestModel(hparams)

    save_dir = tutils.init_save_dir()

    # exp file to get meta
    logger = tutils.get_test_tube_logger(False)

    # exp file to get weights
    checkpoint = tutils.init_checkpoint_callback(logger)

    trainer_options = dict(
        show_progress_bar=False,
        max_nb_epochs=1,
        train_percent_check=0.4,
        val_percent_check=0.2,
        checkpoint_callback=checkpoint,
        logger=logger,
        gpus=[0, 1],
        distributed_backend='ddp'
    )

    # fit model
    trainer = Trainer(**trainer_options)
    result = trainer.fit(model)

    exp = logger.experiment
    logging.info(os.listdir(exp.get_data_path(exp.name, exp.version)))

    # correct result and ok accuracy
    assert result == 1, 'training failed to complete'
    pretrained_model = tutils.load_model(logger.experiment,
                                         trainer.checkpoint_callback.filepath,
                                         module_class=LightningTestModel)

    # run test set
    new_trainer = Trainer(**trainer_options)
    new_trainer.test(pretrained_model)

    for dataloader in model.test_dataloader():
        tutils.run_prediction(dataloader, pretrained_model)

    tutils.clear_save_dir()
def test_cpu_model(tmpdir):
    """Make sure model trains on CPU."""
    tutils.reset_seed()

    trainer_options = dict(default_save_path=tmpdir,
                           show_progress_bar=False,
                           logger=tutils.get_test_tube_logger(tmpdir),
                           max_epochs=1,
                           train_percent_check=0.4,
                           val_percent_check=0.4)

    model, hparams = tutils.get_model()

    tutils.run_model_test(trainer_options, model, on_gpu=False)
def test_cpu_model_with_amp(tmpdir):
    """Make sure model trains on CPU."""
    tutils.reset_seed()

    trainer_options = dict(default_save_path=tmpdir,
                           show_progress_bar=False,
                           logger=tutils.get_test_tube_logger(tmpdir),
                           max_epochs=1,
                           train_percent_check=0.4,
                           val_percent_check=0.4,
                           use_amp=True)

    model, hparams = tutils.get_model()

    with pytest.raises((MisconfigurationException, ModuleNotFoundError)):
        tutils.run_model_test(trainer_options, model, on_gpu=False)
def test_cpu_model():
    """
    Make sure model trains on CPU
    :return:
    """
    tutils.reset_seed()

    trainer_options = dict(show_progress_bar=False,
                           logger=tutils.get_test_tube_logger(),
                           max_nb_epochs=1,
                           train_percent_check=0.4,
                           val_percent_check=0.4)

    model, hparams = tutils.get_model()

    tutils.run_model_test(trainer_options, model, hparams, on_gpu=False)
def test_testtube_logger(tmpdir):
    """Verify that basic functionality of test tube logger works."""
    tutils.reset_seed()
    hparams = tutils.get_hparams()
    model = LightningTestModel(hparams)

    logger = tutils.get_test_tube_logger(tmpdir, False)

    trainer_options = dict(max_num_epochs=1,
                           train_percent_check=0.01,
                           logger=logger)

    trainer = Trainer(**trainer_options)
    result = trainer.fit(model)

    assert result == 1, "Training failed"
Exemple #15
0
def test_running_test_pretrained_model_dp():
    tutils.reset_seed()

    """Verify test() on pretrained model"""
    if not tutils.can_run_gpu_test():
        return

    hparams = tutils.get_hparams()
    model = LightningTestModel(hparams)

    save_dir = tutils.init_save_dir()

    # logger file to get meta
    logger = tutils.get_test_tube_logger(False)

    # logger file to get weights
    checkpoint = tutils.init_checkpoint_callback(logger)

    trainer_options = dict(
        show_progress_bar=True,
        max_nb_epochs=1,
        train_percent_check=0.4,
        val_percent_check=0.2,
        checkpoint_callback=checkpoint,
        logger=logger,
        gpus=[0, 1],
        distributed_backend='dp'
    )

    # fit model
    trainer = Trainer(**trainer_options)
    result = trainer.fit(model)

    # correct result and ok accuracy
    assert result == 1, 'training failed to complete'
    pretrained_model = tutils.load_model(logger.experiment,
                                         trainer.checkpoint_callback.filepath,
                                         module_class=LightningTestModel)

    new_trainer = Trainer(**trainer_options)
    new_trainer.test(pretrained_model)

    # test we have good test accuracy
    tutils.assert_ok_test_acc(new_trainer)
    tutils.clear_save_dir()
Exemple #16
0
def test_loading_meta_tags(tmpdir):
    tutils.reset_seed()

    from argparse import Namespace
    hparams = tutils.get_hparams()

    # save tags
    logger = tutils.get_test_tube_logger(tmpdir, False)
    logger.log_hyperparams(Namespace(some_str='a_str', an_int=1, a_float=2.0))
    logger.log_hyperparams(hparams)
    logger.save()

    # load tags
    path_expt_dir = tutils.get_data_path(logger, path_dir=tmpdir)
    tags_path = os.path.join(path_expt_dir, 'meta_tags.csv')
    tags = load_hparams_from_tags_csv(tags_path)

    assert tags.batch_size == 32 and tags.hidden_dim == 1000
Exemple #17
0
def test_loading_meta_tags(tmpdir):
    tutils.reset_seed()

    from argparse import Namespace
    hparams = tutils.get_hparams()

    # save tags
    logger = tutils.get_test_tube_logger(tmpdir, False)
    logger.log_hyperparams(Namespace(some_str='a_str', an_int=1, a_float=2.0))
    logger.log_hyperparams(hparams)
    logger.save()

    # load tags
    tags_path = logger.experiment.get_data_path(
        logger.experiment.name, logger.experiment.version) + '/meta_tags.csv'
    tags = training_io.load_hparams_from_tags_csv(tags_path)

    assert tags.batch_size == 32 and tags.hidden_dim == 1000
def test_all_features_cpu_model(tmpdir):
    """Test each of the trainer options."""
    tutils.reset_seed()

    trainer_options = dict(default_save_path=tmpdir,
                           gradient_clip_val=1.0,
                           overfit_pct=0.20,
                           track_grad_norm=2,
                           print_nan_grads=True,
                           show_progress_bar=False,
                           logger=tutils.get_test_tube_logger(tmpdir),
                           accumulate_grad_batches=2,
                           max_epochs=1,
                           train_percent_check=0.4,
                           val_percent_check=0.4)

    model, hparams = tutils.get_model()
    tutils.run_model_test(trainer_options, model, on_gpu=False)
def test_no_val_module():
    """
    Tests use case where trainer saves the model, and user loads it from tags independently
    :return:
    """
    tutils.reset_seed()

    hparams = tutils.get_hparams()

    class CurrentTestModel(LightningTestModelBase):
        pass

    model = CurrentTestModel(hparams)

    save_dir = tutils.init_save_dir()

    # logger file to get meta
    logger = tutils.get_test_tube_logger(False)

    trainer_options = dict(max_nb_epochs=1,
                           logger=logger,
                           checkpoint_callback=ModelCheckpoint(save_dir))

    # fit model
    trainer = Trainer(**trainer_options)
    result = trainer.fit(model)

    # training complete
    assert result == 1, 'amp + ddp model failed to complete'

    # save model
    new_weights_path = os.path.join(save_dir, 'save_test.ckpt')
    trainer.save_checkpoint(new_weights_path)

    # load new model
    tags_path = logger.experiment.get_data_path(logger.experiment.name,
                                                logger.experiment.version)
    tags_path = os.path.join(tags_path, 'meta_tags.csv')
    model_2 = LightningTestModel.load_from_metrics(
        weights_path=new_weights_path, tags_csv=tags_path)
    model_2.eval()

    # make prediction
    tutils.clear_save_dir()
def test_amp_gpu_ddp_slurm_managed(tmpdir):
    """Make sure DDP + AMP work."""
    if not tutils.can_run_gpu_test():
        return

    tutils.reset_seed()

    # simulate setting slurm flags
    tutils.set_random_master_port()
    os.environ['SLURM_LOCALID'] = str(0)

    hparams = tutils.get_hparams()
    model = LightningTestModel(hparams)

    trainer_options = dict(show_progress_bar=True,
                           max_epochs=1,
                           gpus=[0],
                           distributed_backend='ddp',
                           use_amp=True)

    # exp file to get meta
    logger = tutils.get_test_tube_logger(tmpdir, False)

    # exp file to get weights
    checkpoint = tutils.init_checkpoint_callback(logger)

    # add these to the trainer options
    trainer_options['checkpoint_callback'] = checkpoint
    trainer_options['logger'] = logger

    # fit model
    trainer = Trainer(**trainer_options)
    trainer.is_slurm_managing_tasks = True
    result = trainer.fit(model)

    # correct result and ok accuracy
    assert result == 1, 'amp + ddp model failed to complete'

    # test root model address
    assert trainer.resolve_root_node_address('abc') == 'abc'
    assert trainer.resolve_root_node_address('abc[23]') == 'abc23'
    assert trainer.resolve_root_node_address('abc[23-24]') == 'abc23'
    assert trainer.resolve_root_node_address(
        'abc[23-24, 45-40, 40]') == 'abc23'
def test_amp_gpu_ddp_slurm_managed():
    """
    Make sure DDP + AMP work
    :return:
    """
    if not tutils.can_run_gpu_test():
        return

    tutils.reset_seed()

    # simulate setting slurm flags
    tutils.set_random_master_port()
    os.environ['SLURM_LOCALID'] = str(0)

    hparams = tutils.get_hparams()
    model = LightningTestModel(hparams)

    trainer_options = dict(show_progress_bar=True,
                           max_nb_epochs=1,
                           gpus=[0],
                           distributed_backend='ddp',
                           use_amp=True)

    save_dir = tutils.init_save_dir()

    # exp file to get meta
    logger = tutils.get_test_tube_logger(False)

    # exp file to get weights
    checkpoint = tutils.init_checkpoint_callback(logger)

    # add these to the trainer options
    trainer_options['checkpoint_callback'] = checkpoint
    trainer_options['logger'] = logger

    # fit model
    trainer = Trainer(**trainer_options)
    trainer.is_slurm_managing_tasks = True
    result = trainer.fit(model)

    # correct result and ok accuracy
    assert result == 1, 'amp + ddp model failed to complete'

    # test root model address
    assert trainer.resolve_root_node_address('abc') == 'abc'
    assert trainer.resolve_root_node_address('abc[23]') == 'abc23'
    assert trainer.resolve_root_node_address('abc[23-24]') == 'abc23'
    assert trainer.resolve_root_node_address(
        'abc[23-24, 45-40, 40]') == 'abc23'

    # test model loading with a map_location
    pretrained_model = tutils.load_model(logger.experiment,
                                         trainer.checkpoint_callback.filepath)

    # test model preds
    for dataloader in trainer.get_test_dataloaders():
        tutils.run_prediction(dataloader, pretrained_model)

    if trainer.use_ddp:
        # on hpc this would work fine... but need to hack it for the purpose of the test
        trainer.model = pretrained_model
        trainer.optimizers, trainer.lr_schedulers = pretrained_model.configure_optimizers(
        )

    # test HPC loading / saving
    trainer.hpc_save(save_dir, logger)
    trainer.hpc_load(save_dir, on_gpu=True)

    # test freeze on gpu
    model.freeze()
    model.unfreeze()

    tutils.clear_save_dir()
def test_cpu_slurm_save_load(tmpdir):
    """
    Verify model save/load/checkpoint on CPU
    :return:
    """
    tutils.reset_seed()

    hparams = tutils.get_hparams()
    model = LightningTestModel(hparams)

    save_dir = tmpdir

    # logger file to get meta
    logger = tutils.get_test_tube_logger(save_dir, False)

    version = logger.version

    trainer_options = dict(
        max_nb_epochs=1,
        logger=logger,
        checkpoint_callback=ModelCheckpoint(save_dir)
    )

    # fit model
    trainer = Trainer(**trainer_options)
    result = trainer.fit(model)
    real_global_step = trainer.global_step

    # traning complete
    assert result == 1, 'amp + ddp model failed to complete'

    # predict with trained model before saving
    # make a prediction
    for dataloader in model.test_dataloader():
        for batch in dataloader:
            break

    x, y = batch
    x = x.view(x.size(0), -1)

    model.eval()
    pred_before_saving = model(x)

    # test HPC saving
    # simulate snapshot on slurm
    saved_filepath = trainer.hpc_save(save_dir, logger)
    assert os.path.exists(saved_filepath)

    # new logger file to get meta
    logger = tutils.get_test_tube_logger(save_dir, False, version=version)

    trainer_options = dict(
        max_nb_epochs=1,
        logger=logger,
        checkpoint_callback=ModelCheckpoint(save_dir),
    )
    trainer = Trainer(**trainer_options)
    model = LightningTestModel(hparams)

    # set the epoch start hook so we can predict before the model does the full training
    def assert_pred_same():
        assert trainer.global_step == real_global_step and trainer.global_step > 0

        # predict with loaded model to make sure answers are the same
        trainer.model.eval()
        new_pred = trainer.model(x)
        assert torch.all(torch.eq(pred_before_saving, new_pred)).item() == 1

    model.on_epoch_start = assert_pred_same

    # by calling fit again, we trigger training, loading weights from the cluster
    # and our hook to predict using current model before any more weight updates
    trainer.fit(model)
Exemple #23
0
def test_dp_resume():
    """
    Make sure DP continues training correctly
    :return:
    """
    if not tutils.can_run_gpu_test():
        return

    tutils.reset_seed()

    hparams = tutils.get_hparams()
    model = LightningTestModel(hparams)

    trainer_options = dict(
        show_progress_bar=True,
        max_nb_epochs=2,
        gpus=2,
        distributed_backend='dp',
    )

    save_dir = tutils.init_save_dir()

    # get logger
    logger = tutils.get_test_tube_logger(debug=False)

    # exp file to get weights
    # logger file to get weights
    checkpoint = tutils.init_checkpoint_callback(logger)

    # add these to the trainer options
    trainer_options['logger'] = logger
    trainer_options['checkpoint_callback'] = checkpoint

    # fit model
    trainer = Trainer(**trainer_options)
    trainer.is_slurm_managing_tasks = True
    result = trainer.fit(model)

    # track epoch before saving
    real_global_epoch = trainer.current_epoch

    # correct result and ok accuracy
    assert result == 1, 'amp + dp model failed to complete'

    # ---------------------------
    # HPC LOAD/SAVE
    # ---------------------------
    # save
    trainer.hpc_save(save_dir, logger)

    # init new trainer
    new_logger = tutils.get_test_tube_logger(version=logger.version)
    trainer_options['logger'] = new_logger
    trainer_options['checkpoint_callback'] = ModelCheckpoint(save_dir)
    trainer_options['train_percent_check'] = 0.2
    trainer_options['val_percent_check'] = 0.2
    trainer_options['max_nb_epochs'] = 1
    new_trainer = Trainer(**trainer_options)

    # set the epoch start hook so we can predict before the model does the full training
    def assert_good_acc():
        assert new_trainer.current_epoch == real_global_epoch and new_trainer.current_epoch > 0

        # if model and state loaded correctly, predictions will be good even though we
        # haven't trained with the new loaded model
        dp_model = new_trainer.model
        dp_model.eval()

        dataloader = trainer.get_train_dataloader()
        tutils.run_prediction(dataloader, dp_model, dp=True)

    # new model
    model = LightningTestModel(hparams)
    model.on_sanity_check_start = assert_good_acc

    # fit new model which should load hpc weights
    new_trainer.fit(model)

    # test freeze on gpu
    model.freeze()
    model.unfreeze()

    tutils.clear_save_dir()