def delete_columns_array(frame): # datatable supports a shape of n x 0 for non-zero n's, while # python doesn't, so we never remove all the columns from a Frame. if frame.ncols < 2: return s = random_array(frame.ncols - 1, positive=True) frame.delete_columns(s)
def __init__(self, context): super().__init__(context) # datatable supports a shape of n x 0 for non-zero n's, while # python doesn't, so we never remove all the columns from a Frame. ncols = self.frame.ncols nkeys = self.frame.nkeys if ncols <= 1: self.skipped = True else: self.array = random_array(ncols - 1, positive=True) set_keys = set(range(nkeys)) set_delcols = set(self.array) self.n_keys_to_remove = len(set_keys.intersection(set_delcols)) if (self.n_keys_to_remove > 0 and self.n_keys_to_remove < nkeys and self.frame.nrows > 0): self.raises = ValueError self.error_message = "Cannot delete a column that is a part " \ "of a multi-column key"
def __init__(self, context): super().__init__(context) self.skipped = (self.frame.nrows == 0) if not self.skipped: self.array = random_array(self.frame.nrows, positive=True) self.array = sorted(set(self.array))
def delete_rows_array(frame): if frame.nrows == 0: return s = random_array(frame.nrows, positive=True) s = sorted(set(s)) frame.delete_rows(s)
def select_rows_array(frame): if frame.nrows == 0: return s = random_array(frame.nrows) frame.slice_rows(s)
def __init__(self, context): super().__init__(context) if self.frame.nrows == 0: self.skipped = True else: self.array = random_array(self.frame.nrows)