Exemple #1
0
def text_detect(img,
                MAX_HORIZONTAL_GAP=30,
                MIN_V_OVERLAPS=0.6,
                MIN_SIZE_SIM=0.6,
                TEXT_PROPOSALS_MIN_SCORE=0.7,
                TEXT_PROPOSALS_NMS_THRESH=0.3,
                TEXT_LINE_NMS_THRESH=0.3):
    boxes, scores = detect.text_detect(np.array(img))
    boxes = np.array(boxes, dtype=np.float32)
    scores = np.array(scores, dtype=np.float32)
    textdetector = TextDetector(MAX_HORIZONTAL_GAP, MIN_V_OVERLAPS,
                                MIN_SIZE_SIM)
    shape = img.shape[:2]
    boxes = textdetector.detect(boxes, scores[:, np.newaxis], shape,
                                TEXT_PROPOSALS_MIN_SCORE,
                                TEXT_PROPOSALS_NMS_THRESH,
                                TEXT_LINE_NMS_THRESH)

    text_recs = get_boxes(boxes)
    newBox = []
    rx = 1
    ry = 1
    for box in text_recs:
        x1, y1 = (box[0], box[1])
        x2, y2 = (box[2], box[3])
        x3, y3 = (box[6], box[7])
        x4, y4 = (box[4], box[5])
        newBox.append([
            x1 * rx, y1 * ry, x2 * rx, y2 * ry, x3 * rx, y3 * ry, x4 * rx,
            y4 * ry
        ])
    return newBox
Exemple #2
0
def text_detect(img,
                MAX_HORIZONTAL_GAP=30,
                MIN_V_OVERLAPS=0.6,
                MIN_SIZE_SIM=0.6,
                TEXT_PROPOSALS_MIN_SCORE=0.7,
                TEXT_PROPOSALS_NMS_THRESH=0.3,
                TEXT_LINE_NMS_THRESH=0.3,
                bili=1.2):  #下面8行检测单个文字

    #下面几行是用yolo给出框.
    Image.fromarray(img).save("look.png")  #看看boxes,scores的含义 是所有rpn的结果.
    boxes, scores = detect.text_detect(np.array(img))  #这里面用的是yolo
    boxes = np.array(boxes, dtype=np.float32)
    scores = np.array(scores, dtype=np.float32)

    Allboxes = boxes
    AllScores = scores

    #函数下面部分是做行拼接.
    textdetector = TextDetector(MAX_HORIZONTAL_GAP, MIN_V_OVERLAPS,
                                MIN_SIZE_SIM)

    shape = img.shape[:2]

    #看看下行boxes 的含义.  scores:表示最后抽取的汉字对应的score?????????对的,下行的scores就是最后每行的
    #分数了!!!!!!!!!!!!!1 非常重要的参数. #下面几行做文字box拼接成seq #tp_groups 表示每一行的文字对应
    #boxesForSingle 中的index
    boxes, scores, keepIndForSingle, tp_groups, boxesForSingle, scoresForSingle = textdetector.detect(
        boxes, scores[:, np.newaxis], shape, TEXT_PROPOSALS_MIN_SCORE,
        TEXT_PROPOSALS_NMS_THRESH, TEXT_LINE_NMS_THRESH, bili)
    #tp_groups 是boxes对应的 box标号.
    text_recs = get_boxes(boxes)

    print(text_recs.shape, "text_recs.shape")
    newBox = []
    rx = 1
    ry = 1
    for box in text_recs:
        x1, y1 = (box[0], box[1])
        x2, y2 = (box[2], box[3])
        x3, y3 = (box[6], box[7])
        x4, y4 = (box[4], box[5])
        newBox.append([
            x1 * rx, y1 * ry, x2 * rx, y2 * ry, x3 * rx, y3 * ry, x4 * rx,
            y4 * ry
        ])

    return newBox, scores, boxesForSingle, scoresForSingle, keepIndForSingle, tp_groups, Allboxes, AllScores
Exemple #3
0
def box_cluster(img, boxes, scores, **args):
    MAX_HORIZONTAL_GAP = args.get('MAX_HORIZONTAL_GAP', 30)
    MIN_V_OVERLAPS = args.get('MIN_V_OVERLAPS', 0.6)
    MIN_SIZE_SIM = args.get('MIN_SIZE_SIM', 0.6)
    textdetector = TextDetector(MAX_HORIZONTAL_GAP, MIN_V_OVERLAPS,
                                MIN_SIZE_SIM)

    shape = img.shape[:2]
    TEXT_PROPOSALS_MIN_SCORE = args.get('TEXT_PROPOSALS_MIN_SCORE', 0.07)
    TEXT_PROPOSALS_NMS_THRESH = args.get('TEXT_PROPOSALS_NMS_THRESH', 0.7)
    TEXT_LINE_NMS_THRESH = args.get('TEXT_LINE_NMS_THRESH', 0.9)
    LINE_MIN_SCORE = args.get('LINE_MIN_SCORE', 0.07)

    boxes, scores = textdetector.detect(boxes, scores[:, np.newaxis], shape,
                                        TEXT_PROPOSALS_MIN_SCORE,
                                        TEXT_PROPOSALS_NMS_THRESH,
                                        TEXT_LINE_NMS_THRESH, LINE_MIN_SCORE)
    return boxes, scores
Exemple #4
0
def net_output_process(batch_preds,
                       batch_shape,
                       batch_shape_padded,
                       prob=0.05):
    """
    将主干网络的批输出转换为boxes,scores,这里方便兼容之前代码,
    暂且使用for循环,以后可替换为vectorize处理
    @params batch_preds(list of arrays):list长度代表n个采样尺度,其中每个\
        array形状为(batch_size,grid_size_w,grid_size_h,3*(4+1+num_classes))
    @params batch_shape(list of tuples):图片原始长宽
    @params prob(float):置信度小于prob的box将被忽略
    @returns batch_boxes(array): [字符区域数量,8]
    @returns batch_scores:[字符区域数量,]
    """
    batch_boxes = []
    batch_scores = []

    MAX_HORIZONTAL_GAP = 100
    MIN_V_OVERLAPS = 0.6
    MIN_SIZE_SIM = 0.6
    textdetector = TextDetector(MAX_HORIZONTAL_GAP, MIN_V_OVERLAPS,
                                MIN_SIZE_SIM)

    TEXT_PROPOSALS_MIN_SCORE = 0.1
    TEXT_PROPOSALS_NMS_THRESH = 0.3
    TEXT_LINE_NMS_THRESH = 0.99
    LINE_MIN_SCORE = 0.1
    leftAdjustAlph = 0.01
    rightAdjustAlph = 0.01

    # 首先初步对模型主干输出进行预处理
    for y1, y2, y3, image_shape, input_shape in zip(batch_preds[0],
                                                    batch_preds[1],
                                                    batch_preds[2],
                                                    batch_shape,
                                                    batch_shape_padded):
        outputs = [y1, y2, y3, image_shape, input_shape]
        box, scores = box_layer(outputs, anchors, num_classes)
        h, w = image_shape
        keep = np.where(scores > prob)
        # box[:, 0:4][box[:, 0:4]<0] = 0
        box = np.array(box)
        scores = np.array(scores)
        box[box < 0] = 0
        box[:, 0][box[:, 0] >= w] = w - 1
        box[:, 1][box[:, 1] >= h] = h - 1
        box[:, 2][box[:, 2] >= w] = w - 1
        box[:, 3][box[:, 3] >= h] = h - 1
        boxes = box[keep[0]]
        scores = scores[keep[0]]

        # 筛选出需要的box,并且进行nms,字符行组合
        boxes, scores = textdetector.detect(boxes, scores[:, np.newaxis],
                                            (h, w), TEXT_PROPOSALS_MIN_SCORE,
                                            TEXT_PROPOSALS_NMS_THRESH,
                                            TEXT_LINE_NMS_THRESH,
                                            LINE_MIN_SCORE)
        boxes = sort_box(boxes)
        batch_boxes.append(boxes)
        batch_scores.append(scores)
        # print('done')

    return batch_boxes, batch_scores