def __init__(self, videoPath, azureSpeechServiceKey, predictThreshold, imageProcessingEndpoint, sendToHubCallback, speechMapFileName): self.videoPath = videoPath self.predictThreshold = predictThreshold self.imageProcessingEndpoint = imageProcessingEndpoint self.imageProcessingParams = "" self.sendToHubCallback = sendToHubCallback if self.__IsInt(videoPath): # case of a usb camera (usually mounted at /dev/video* where * is an int) self.isWebcam = True self.vs = None self.speech_map = None self.speech_voice = 'en-US-GuyNeural' self.speech_map_filename = speechMapFileName if speechMapFileName is not None and os.path.isfile( self.speech_map_filename): with open(self.speech_map_filename, encoding='utf-8') as f: json_data = json.load(f) self.speech_voice = json_data.get('voice') self.speech_map = json_data.get('map') self.tts = text2speech.TextToSpeech(azureSpeechServiceKey, enableMemCache=True, enableDiskCache=True, voice=self.speech_voice) text = self.__localize_text('Starting scanner') self.tts.play('Starting scanner' if text is None else text)
def __init__(self, videoPath, azureSpeechServiceKey, predictThreshold, imageProcessingEndpoint, sendToHubCallback=None): self.videoPath = videoPath self.tts = text2speech.TextToSpeech(azureSpeechServiceKey) self.predictThreshold = predictThreshold self.imageProcessingEndpoint = imageProcessingEndpoint self.imageProcessingParams = "" self.sendToHubCallback = sendToHubCallback self.tts.play('Starting scanner') if self.__IsInt(videoPath): # case of a usb camera (usually mounted at /dev/video* where * is an int) self.isWebcam = True self.vs = None
def addArray(array, article): #rgb = (int(float(array[0])), int(float(array[1])), int(float(array[2]))) rgb = tuple(array) hex_result = '%02x%02x%02x' % rgb print(hex_result) input = hex_result + ', ' + article item = getClosestColor(input) recommendation = item print(recommendation) value = recommendation[0].split(', ') color = value[0] item = value[1] print("Wear a " + webcolors.hex_to_name('#' + color) + " " + item) subscription_key = "3dcb81c95f9d46248813f574677f3272" app = text2speech.TextToSpeech(subscription_key, webcolors.hex_to_name('#' + color), article) app.get_token() app.save_audio("suggestion.wav") playsound('suggestion.wav')
import text2speech speech_voice = 'en-AU-Catherine' azureSpeechServiceKey = '' tts = text2speech.TextToSpeech(azureSpeechServiceKey, enableMemCache=False, enableDiskCache=False, voice=speech_voice) tts.play("hello world")
import requests import io import os import numpy as np # import local devicecheck module import devicecheck import hubmanager import oleddisplay from iothub_client import IoTHubMessage import text2speech oled_display = None hub = None IMAGE_CLASSIFY_THRESHOLD = .95 tts = text2speech.TextToSpeech(os.getenv('BingKey')) # Pull camera images and stream data to image classifier module. def stream_camera_data(camera): while True: stream = io.BytesIO() camera.capture(stream, format='jpeg') stream.seek(0) image = {'imageData': stream} try: requests.post('http://image-classifier-service:80/image', files=image, hooks={'response': c_request_response}) except Exception as e:
if (object_.name == "Pants"): width, height = im.size # Cropped image of above dimension # (It will not change orginal image) im2 = im.crop((coord[0] * width, coord[1] * height, coord[2] * width, coord[3] * height)) im2.save("pant.png") path = "pant.png" with io.open(path, 'rb') as image_file: content = image_file.read() image = vision.types.Image(content=content) response = client.image_properties(image=image) props = response.image_properties_annotation pantColor = [] for color in props.dominant_colors.colors: pantColor.append(format(color.color.red)) pantColor.append(format(color.color.green)) pantColor.append(format(color.color.blue)) break for color in topColor: print(color) for color in pantColor: print(color) subscription_key = "3dcb81c95f9d46248813f574677f3272" app = text2speech.TextToSpeech(subscription_key, "purple", "shirt") app.get_token() app.save_audio() playsound('sample.wav')
def __init__(self, videoPath, bingSpeechKey, predictThreshold, imageProcessingEndpoint="", imageProcessingParams="", showVideo=False, verbose=True, loopVideo=True, convertToGray=False, resizeWidth=0, resizeHeight=0, annotate=False, sendToHubCallback=None): self.videoPath = videoPath if self.__IsInt(videoPath): # case of a usb camera (usually mounted at /dev/video* where * is an int) self.isWebcam = True else: # case of a video file self.isWebcam = False self.imageProcessingEndpoint = imageProcessingEndpoint if imageProcessingParams == "": self.imageProcessingParams = "" else: self.imageProcessingParams = json.loads(imageProcessingParams) self.showVideo = showVideo self.verbose = verbose self.loopVideo = loopVideo self.convertToGray = convertToGray self.resizeWidth = resizeWidth self.resizeHeight = resizeHeight self.annotate = (self.imageProcessingEndpoint != "") and self.showVideo & annotate self.nbOfPreprocessingSteps = 0 self.autoRotate = False self.sendToHubCallback = sendToHubCallback self.vs = None self.tts = text2speech.TextToSpeech(bingSpeechKey) self.predictThreshold = predictThreshold if self.convertToGray: self.nbOfPreprocessingSteps += 1 if self.resizeWidth != 0 or self.resizeHeight != 0: self.nbOfPreprocessingSteps += 1 if self.verbose: print( "Initialising the camera capture with the following parameters: " ) print(" - Video path: " + self.videoPath) print(" - Image processing endpoint: " + self.imageProcessingEndpoint) print(" - Image processing params: " + json.dumps(self.imageProcessingParams)) print(" - Show video: " + str(self.showVideo)) print(" - Loop video: " + str(self.loopVideo)) print(" - Convert to gray: " + str(self.convertToGray)) print(" - Resize width: " + str(self.resizeWidth)) print(" - Resize height: " + str(self.resizeHeight)) print(" - Annotate: " + str(self.annotate)) print(" - Send processing results to hub: " + str(self.sendToHubCallback is not None)) print()