class TextDetector: """ Detect text from an image """ def __init__(self, text_proposal_detector): self.text_proposal_detector = text_proposal_detector self.text_proposal_connector = TextProposalConnector() def detect(self, im, sq=False): """ Detecting texts from an image :return: the bounding boxes of the detected texts """ text_proposals, scores, sides = self.text_proposal_detector.detect( im, cfg.MEAN) keep_inds = np.where(scores > cfg.TEXT_PROPOSALS_MIN_SCORE)[0] text_proposals, scores, sides = text_proposals[keep_inds], scores[ keep_inds], sides[keep_inds] sorted_indices = np.argsort(scores.ravel())[::-1] text_proposals, scores, sides = text_proposals[sorted_indices], scores[ sorted_indices], sides[sorted_indices] # nms for text proposals keep_inds = nms(np.hstack((text_proposals, scores)), cfg.TEXT_PROPOSALS_NMS_THRESH) text_proposals, scores, sides = text_proposals[keep_inds], scores[ keep_inds], sides[keep_inds] if sq: return text_proposals scores = normalize(scores) text_lines = self.text_proposal_connector.get_text_lines( text_proposals, scores, im.shape[:2], sides) keep_inds = self.filter_boxes(text_lines) text_lines = text_lines[keep_inds] # nms for text lines if text_lines.shape[0] != 0: keep_inds = nms(text_lines, cfg.TEXT_LINE_NMS_THRESH) text_lines = text_lines[keep_inds] return text_lines def filter_boxes(self, boxes): heights = boxes[:, 3] - boxes[:, 1] + 1 widths = boxes[:, 2] - boxes[:, 0] + 1 scores = boxes[:, -1] return np.where( (widths / heights > cfg.MIN_RATIO) & (scores > cfg.LINE_MIN_SCORE) & (widths > (cfg.TEXT_PROPOSALS_WIDTH * cfg.MIN_NUM_PROPOSALS)))[0]
class TextDetector: """ Detect text from an image """ def __init__(self, text_proposal_detector): self.text_proposal_detector=text_proposal_detector self.text_proposal_connector=TextProposalConnector() def detect(self, im): """ Detecting texts from an image :return: the bounding boxes of the detected texts """ text_proposals, scores=self.text_proposal_detector.detect(im, cfg.MEAN) keep_inds=np.where(scores>cfg.TEXT_PROPOSALS_MIN_SCORE)[0] text_proposals, scores=text_proposals[keep_inds], scores[keep_inds] sorted_indices=np.argsort(scores.ravel())[::-1] text_proposals, scores=text_proposals[sorted_indices], scores[sorted_indices] # nms for text proposals keep_inds=nms(np.hstack((text_proposals, scores)), cfg.TEXT_PROPOSALS_NMS_THRESH) text_proposals, scores=text_proposals[keep_inds], scores[keep_inds] scores=normalize(scores) text_lines=self.text_proposal_connector.get_text_lines(text_proposals, scores, im.shape[:2]) keep_inds=self.filter_boxes(text_lines) text_lines=text_lines[keep_inds] # nms for text lines if text_lines.shape[0]!=0: keep_inds=nms(text_lines, cfg.TEXT_LINE_NMS_THRESH) text_lines=text_lines[keep_inds] return text_lines def filter_boxes(self, boxes): heights=boxes[:, 3]-boxes[:, 1]+1 widths=boxes[:, 2]-boxes[:, 0]+1 scores=boxes[:, -1] return np.where((widths/heights>cfg.MIN_RATIO) & (scores>cfg.LINE_MIN_SCORE) & (widths>(cfg.TEXT_PROPOSALS_WIDTH*cfg.MIN_NUM_PROPOSALS)))[0]
def connect_proposal(text_proposals, scores, im_size): cp = TextProposalConnector() line = cp.get_text_lines(text_proposals, scores, im_size) return line
def __init__(self, text_proposal_detector): self.text_proposal_detector = text_proposal_detector self.text_proposal_connector = TextProposalConnector()
def __init__(self, text_proposal_detector): self.text_proposal_detector=text_proposal_detector self.text_proposal_connector=TextProposalConnector()
def __init__(self): """ pass """ self.text_proposal_connector=TextProposalConnector()
class LineParser: """ parse line in image """ def __init__(self, tags='', im_shape=None): self.tags = tags self.boxes_connector = TextProposalConnector() self.im_shape = im_shape def get_all_boxes(self, tags='', decode_utf8=True): """given a label tages, parse all chars contained in it""" if decode_utf8: tags = tags.decode('utf-8') single_char = [char for char in tags.split(';') if char[-1] != '#'] char_boxes = np.zeros((len(single_char), 4), dtype=np.float32) char_labels = [] for ind, char in enumerate(single_char): try: char_boxes[ind] = np.array([ float(char.split(':')[0]), float(char.split(':')[1]), float(char.split(':')[2]), float(char.split(':')[3]) ], dtype=np.float32) char_labels.append(char.split(':')[-1]) except: char_labels.append('') return char_boxes, char_labels def filter_boxes(self, boxes, boxes_label): heights = boxes[:, 3] - boxes[:, 1] + 1 widths = boxes[:, 2] - boxes[:, 0] + 1 keep_inds = np.where((widths > Config.BOXES_WIDTH) & (heights > Config.BOXES_HEIGHT))[0] boxes = boxes[keep_inds] boxes_label = [boxes_label[ind] for ind in keep_inds] return boxes, boxes_label def filter_lines(self, lines, lines_label): heights = lines[:, 3] - lines[:, 1] + 1 widths = lines[:, 2] - lines[:, 0] + 1 keep_inds = np.where((widths / heights > Config.MIN_RATIO) & ( widths > (Config.BOXES_WIDTH * Config.MIN_NUM_BOXES)))[0] lines = lines[keep_inds] lines_label = [lines_label[ind] for ind in keep_inds] return lines, lines_label def gen_line(self): char_boxes, char_labels = self.get_all_boxes( self.tags, decode_utf8=Config.decode_utf8) char_boxes, char_labels = self.filter_boxes(char_boxes, char_labels) lines, lines_label = self.boxes_connector.get_text_lines( char_boxes, char_labels, self.im_shape[:2]) lines, lines_label = self.filter_lines(lines, lines_label) return lines, lines_label def display_boxes(self, im, boxes, labels): from matplotlib.font_manager import FontProperties ChineseFont = FontProperties( fname='/media/home/netease/PyProjects/test/fonts/SIMYOU.TTF') im = im[:, :, (2, 1, 0)] fig, ax = plt.subplots(figsize=(12, 12)) ax.imshow(im, aspect='equal') for i, box in enumerate(boxes): bbox = boxes[i, :4] ax.add_patch( plt.Rectangle((bbox[0], bbox[1]), bbox[2] - bbox[0], bbox[3] - bbox[1], fill=False, edgecolor='red', linewidth=3.5)) ax.text(bbox[0], bbox[1] - 2, u'{:s}'.format(labels[i]), bbox=dict(alpha=0.5), fontsize=14, color='white', fontproperties=ChineseFont) plt.axis('off') plt.tight_layout() plt.draw() plt.show()
def __init__(self, tags='', im_shape=None): self.tags = tags self.boxes_connector = TextProposalConnector() self.im_shape = im_shape