class TestPatternParser(unittest.TestCase): def setUp(self): self.parser = PatternParser() self.text = "And now for something completely different." def test_parse(self): assert_equal(self.parser.parse(self.text), pattern_parse(self.text))
class Blobber(object): """A factory for TextBlobs that all share the same tagger, tokenizer, parser, classifier, and np_extractor. Usage: >>> from textblob import Blobber >>> from textblob.taggers import NLTKTagger >>> from textblob.tokenizers import SentenceTokenizer >>> tb = Blobber(pos_tagger=NLTKTagger(), tokenizer=SentenceTokenizer()) >>> blob1 = tb("This is one blob.") >>> blob2 = tb("This blob has the same tagger and tokenizer.") >>> blob1.pos_tagger is blob2.pos_tagger True :param tokenizer: (optional) A tokenizer instance. If ``None``, defaults to :class:`WordTokenizer() <textblob.tokenizers.WordTokenizer>`. :param np_extractor: (optional) An NPExtractor instance. If ``None``, defaults to :class:`FastNPExtractor() <textblob.en.np_extractors.FastNPExtractor>`. :param pos_tagger: (optional) A Tagger instance. If ``None``, defaults to :class:`NLTKTagger <textblob.en.taggers.NLTKTagger>`. :param analyzer: (optional) A sentiment analyzer. If ``None``, defaults to :class:`PatternAnalyzer <textblob.en.sentiments.PatternAnalyzer>`. :param parser: A parser. If ``None``, defaults to :class:`PatternParser <textblob.en.parsers.PatternParser>`. :param classifier: A classifier. .. versionadded:: 0.4.0 """ np_extractor = FastNPExtractor() pos_tagger = NLTKTagger() tokenizer = WordTokenizer() analyzer = PatternAnalyzer() parser = PatternParser() def __init__(self, tokenizer=None, pos_tagger=None, np_extractor=None, analyzer=None, parser=None, classifier=None): _initialize_models(self, tokenizer, pos_tagger, np_extractor, analyzer, parser, classifier) def __call__(self, text): """Return a new TextBlob object with this Blobber's ``np_extractor``, ``pos_tagger``, ``tokenizer``, ``analyzer``, and ``classifier``. :returns: A new :class:`TextBlob <TextBlob>`. """ return TextBlob(text, tokenizer=self.tokenizer, pos_tagger=self.pos_tagger, np_extractor=self.np_extractor, analyzer=self.analyzer, parser=self.parser, classifier=self.classifier) def __repr__(self): classifier_name = self.classifier.__class__.__name__ + "()" if self.classifier else "None" return ("Blobber(tokenizer={0}(), pos_tagger={1}(), " "np_extractor={2}(), analyzer={3}(), parser={4}(), classifier={5})")\ .format(self.tokenizer.__class__.__name__, self.pos_tagger.__class__.__name__, self.np_extractor.__class__.__name__, self.analyzer.__class__.__name__, self.parser.__class__.__name__, classifier_name) __str__ = __repr__
class BaseBlob(StringlikeMixin, BlobComparableMixin): """An abstract base class that all textblob classes will inherit from. Includes words, POS tag, NP, and word count properties. Also includes basic dunder and string methods for making objects like Python strings. :param text: A string. :param tokenizer: (optional) A tokenizer instance. If ``None``, defaults to :class:`WordTokenizer() <textblob.tokenizers.WordTokenizer>`. :param np_extractor: (optional) An NPExtractor instance. If ``None``, defaults to :class:`FastNPExtractor() <textblob.en.np_extractors.FastNPExtractor>`. :param pos_tagger: (optional) A Tagger instance. If ``None``, defaults to :class:`NLTKTagger <textblob.en.taggers.NLTKTagger>`. :param analyzer: (optional) A sentiment analyzer. If ``None``, defaults to :class:`PatternAnalyzer <textblob.en.sentiments.PatternAnalyzer>`. :param parser: A parser. If ``None``, defaults to :class:`PatternParser <textblob.en.parsers.PatternParser>`. :param classifier: A classifier. .. versionchanged:: 0.6.0 ``clean_html`` parameter deprecated, as it was in NLTK. """ np_extractor = FastNPExtractor() pos_tagger = NLTKTagger() tokenizer = WordTokenizer() translator = Translator() analyzer = PatternAnalyzer() parser = PatternParser() def __init__(self, text, tokenizer=None, pos_tagger=None, np_extractor=None, analyzer=None, parser=None, classifier=None, clean_html=False): if not isinstance(text, basestring): raise TypeError('The `text` argument passed to `__init__(text)` ' 'must be a string, not {0}'.format(type(text))) if clean_html: raise NotImplementedError( "clean_html has been deprecated. " "To remove HTML markup, use BeautifulSoup's " "get_text() function") self.raw = self.string = text self.stripped = lowerstrip(self.raw, all=True) _initialize_models(self, tokenizer, pos_tagger, np_extractor, analyzer, parser, classifier) @cached_property def words(self): """Return a list of word tokens. This excludes punctuation characters. If you want to include punctuation characters, access the ``tokens`` property. :returns: A :class:`WordList <WordList>` of word tokens. """ return WordList(word_tokenize(self.raw, include_punc=False)) @cached_property def tokens(self): """Return a list of tokens, using this blob's tokenizer object (defaults to :class:`WordTokenizer <textblob.tokenizers.WordTokenizer>`). """ return WordList(self.tokenizer.tokenize(self.raw)) def tokenize(self, tokenizer=None): """Return a list of tokens, using ``tokenizer``. :param tokenizer: (optional) A tokenizer object. If None, defaults to this blob's default tokenizer. """ t = tokenizer if tokenizer is not None else self.tokenizer return WordList(t.tokenize(self.raw)) def parse(self, parser=None): """Parse the text. :param parser: (optional) A parser instance. If ``None``, defaults to this blob's default parser. .. versionadded:: 0.6.0 """ p = parser if parser is not None else self.parser return p.parse(self.raw) def classify(self): """Classify the blob using the blob's ``classifier``.""" if self.classifier is None: raise NameError("This blob has no classifier. Train one first!") return self.classifier.classify(self.raw) @cached_property def sentiment(self): """Return a tuple of form (polarity, subjectivity ) where polarity is a float within the range [-1.0, 1.0] and subjectivity is a float within the range [0.0, 1.0] where 0.0 is very objective and 1.0 is very subjective. :rtype: namedtuple of the form ``Sentiment(polarity, subjectivity)`` """ return self.analyzer.analyze(self.raw) @cached_property def sentiment_assessments(self): """Return a tuple of form (polarity, subjectivity, assessments ) where polarity is a float within the range [-1.0, 1.0], subjectivity is a float within the range [0.0, 1.0] where 0.0 is very objective and 1.0 is very subjective, and assessments is a list of polarity and subjectivity scores for the assessed tokens. :rtype: namedtuple of the form ``Sentiment(polarity, subjectivity, assessments)`` """ return self.analyzer.analyze(self.raw, keep_assessments=True) @cached_property def polarity(self): """Return the polarity score as a float within the range [-1.0, 1.0] :rtype: float """ return PatternAnalyzer().analyze(self.raw)[0] @cached_property def subjectivity(self): """Return the subjectivity score as a float within the range [0.0, 1.0] where 0.0 is very objective and 1.0 is very subjective. :rtype: float """ return PatternAnalyzer().analyze(self.raw)[1] @cached_property def noun_phrases(self): """Returns a list of noun phrases for this blob.""" return WordList([ phrase.strip().lower() for phrase in self.np_extractor.extract(self.raw) if len(phrase) > 1 ]) @cached_property def pos_tags(self): """Returns an list of tuples of the form (word, POS tag). Example: :: [('At', 'IN'), ('eight', 'CD'), ("o'clock", 'JJ'), ('on', 'IN'), ('Thursday', 'NNP'), ('morning', 'NN')] :rtype: list of tuples """ if isinstance(self, TextBlob): return [ val for sublist in [s.pos_tags for s in self.sentences] for val in sublist ] else: return [(Word(word, pos_tag=t), unicode(t)) for word, t in self.pos_tagger.tag(self) if not PUNCTUATION_REGEX.match(unicode(t))] tags = pos_tags @cached_property def word_counts(self): """Dictionary of word frequencies in this text. """ counts = defaultdict(int) stripped_words = [lowerstrip(word) for word in self.words] for word in stripped_words: counts[word] += 1 return counts @cached_property def np_counts(self): """Dictionary of noun phrase frequencies in this text. """ counts = defaultdict(int) for phrase in self.noun_phrases: counts[phrase] += 1 return counts def ngrams(self, n=3): """Return a list of n-grams (tuples of n successive words) for this blob. :rtype: List of :class:`WordLists <WordList>` """ if n <= 0: return [] grams = [ WordList(self.words[i:i + n]) for i in range(len(self.words) - n + 1) ] return grams def translate(self, from_lang="auto", to="en"): """Translate the blob to another language. Uses the Google Translate API. Returns a new TextBlob. Requires an internet connection. Usage: :: >>> b = TextBlob("Simple is better than complex") >>> b.translate(to="es") TextBlob('Lo simple es mejor que complejo') Language code reference: https://developers.google.com/translate/v2/using_rest#language-params .. versionadded:: 0.5.0. :param str from_lang: Language to translate from. If ``None``, will attempt to detect the language. :param str to: Language to translate to. :rtype: :class:`BaseBlob <BaseBlob>` """ return self.__class__( self.translator.translate(self.raw, from_lang=from_lang, to_lang=to)) def detect_language(self): """Detect the blob's language using the Google Translate API. Requires an internet connection. Usage: :: >>> b = TextBlob("bonjour") >>> b.detect_language() u'fr' Language code reference: https://developers.google.com/translate/v2/using_rest#language-params .. versionadded:: 0.5.0 :rtype: str """ return self.translator.detect(self.raw) def correct(self): """Attempt to correct the spelling of a blob. .. versionadded:: 0.6.0 :rtype: :class:`BaseBlob <BaseBlob>` """ # regex matches: word or punctuation or whitespace tokens = nltk.tokenize.regexp_tokenize(self.raw, "\w+|[^\w\s]|\s") corrected = (Word(w).correct() for w in tokens) ret = ''.join(corrected) return self.__class__(ret) def _cmpkey(self): """Key used by ComparableMixin to implement all rich comparison operators. """ return self.raw def _strkey(self): """Key used by StringlikeMixin to implement string methods.""" return self.raw def __hash__(self): return hash(self._cmpkey()) def __add__(self, other): '''Concatenates two text objects the same way Python strings are concatenated. Arguments: - `other`: a string or a text object ''' if isinstance(other, basestring): return self.__class__(self.raw + other) elif isinstance(other, BaseBlob): return self.__class__(self.raw + other.raw) else: raise TypeError( 'Operands must be either strings or {0} objects'.format( self.__class__.__name__)) def split(self, sep=None, maxsplit=sys.maxsize): """Behaves like the built-in str.split() except returns a WordList. :rtype: :class:`WordList <WordList>` """ return WordList(self._strkey().split(sep, maxsplit))
blob.tokens #This is an alternative way tokenizer = BlanklineTokenizer() blob = TextBlob("A token\n\nof appreciation") blob.tokenize(tokenizer) # Noun phrase chunkers from textblob.np_extractors import ConllExtractor extractor = ConllExtractor() blob = TextBlob("Python is a high-level programming language.", np_extractor=extractor) blob.noun_phrases # POS taggers from textblob.taggers import NLTKTagger nltk_tagger = NLTKTagger() blob = TextBlob("Tag! You're It!", pos_tagger=nltk_tagger) blob.pos_tags # Parser from textblob.parsers import PatternParser blob = TextBlob("Parsing is fun.", parser=PatternParser()) blob.parse() # TextBlob that share same model rom textblob.taggers import NLTKTagger tb = Blobber(pos_tagger=NLTKTagger()) blob1 = tb("This is a blob.") blob2 = tb("This is another blob.") blob1.pos_tagger is blob2.pos_tagger
def __init__(self): self.tag_stack = [] self.ignore_data = False self.parsed_text = '' self.blobber = Blobber(parser=PatternParser(), pos_tagger=PatternTagger()) HTMLParser.__init__(self)
def test_parse(self): blob = tb.TextBlob("And now for something completely different.") assert_equal(blob.parse(), PatternParser().parse(blob.string))
def setUp(self): self.parser = PatternParser() self.text = "And now for something completely different."
**Regular Expression Parsing** """ import nltk nltk.download('punkt') nltk.download('averaged_perceptron_tagger') from nltk.tag import pos_tag from nltk.tokenize import word_tokenize data = "Xi Jinping is a Chinese politician who has served as General Secretary of the Chinese Communist Party (CCP) and Chairman of the Central Military Commission (CMC) since 2012, and President of the People's Republic of China (PRC) since 2013. He has been the paramount leader of China, the most prominent political leader in the country, since 2012. The son of Chinese Communist veteran Xi Zhongxun, he was exiled to rural Yanchuan County as a teenager following his father's purge during the Cultural Revolution and lived in a cave in the village of Liangjiahe, where he joined the CCP and worked as the party secretary." new_token = nltk.pos_tag (word_tokenize(data)) new_token np = r "NP: {<DT>?<JJ>*<NN>}" #This is a definition for a rule to group of words into a noun phrase. It will group one determinant, then zero or more adjectives followed by zero or more nouns. chunk_parser = nltk.RegexpParser(np) #RegexpParser - Uses a set of regular expression patterns to specify the behavior of the parser. result = chunk_parser.parse(new_token) result """**Pattern Parsing**""" import nltk nltk.download('punkt') nltk.download('averaged_perceptron_tagger') from nltk.tag import pos_tag from nltk.tokenize import word_tokenize from textblob import TextBlob from textblob.parsers import PatternParser data = "Xi Jinping is a Chinese politician who has served as General Secretary of the Chinese Communist Party (CCP)." new_token = nltk.pos_tag (word_tokenize(data)) chunk_parser = PatternParser() result = chunk_parser.parse(new_token) result
def check_sarc(tweet): blob = TextBlob(tweet, parser=PatternParser()) tokens = blob.parse().split(' ') dic = defaultdict(list) # stores all phrases by category temp = '' phrases = [] # list of all phrases for t in tokens: if t.split('/')[2] == 'O': if temp: phrases.append((ctag, temp)) dic[t.split('/')[2]].append(temp) temp = t.split('/')[0] + ' ' ctag = t.split('/')[2] elif 'B-' in t.split('/')[2]: if temp: phrases.append((ctag, temp)) temp = t.split('/')[0] + ' ' dic[t.split('/')[2].split('-')[1]].append(temp) ctag = t.split('/')[2].split('-')[1] elif 'I-' in t.split('/')[2]: dic[t.split('/')[2].split('-')[1]][-1] += t.split('/')[0] + ' ' temp += t.split('/')[0] + ' ' ctag = t.split('/')[2].split('-')[1] else: pass if temp: phrases.append((ctag, temp)) SF = [] sf = [] for i in phrases: if i[0] in ['NP', 'ADjP']: SF.append(i[1]) elif i[0] == 'VP': sf.append(i[1]) for i in range(len(phrases) - 1): if phrases[i][0] == 'NP' and phrases[i + 1][0] == 'VP': SF.append(phrases[i][1] + ' ' + phrases[i + 1][1]) elif phrases[i][0] == 'ADVP' and phrases[i + 1][0] == 'VP': sf.append(phrases[i][1] + ' ' + phrases[i + 1][1]) elif phrases[i][0] == 'VP' and phrases[i + 1][0] == 'ADVP': sf.append(phrases[i][1] + ' ' + phrases[i + 1][1]) elif phrases[i][0] == 'ADJP' and phrases[i + 1][0] == 'VP': sf.append(phrases[i][1] + ' ' + phrases[i + 1][1]) elif phrases[i][0] == 'VP' and phrases[i + 1][0] == 'NP': sf.append(phrases[i][1] + ' ' + phrases[i + 1][1]) for i in range(len(phrases) - 2): if phrases[i][0] == 'VP' and phrases[i + 1][0] == 'ADVP' and phrases[ i + 2][0] == 'ADJP': sf.append(phrases[i][1] + ' ' + phrases[i + 1][1] + ' ' + phrases[i + 1][1]) elif phrases[i][0] == 'VP' and phrases[i + 1][0] == 'ADJP' and phrases[ i + 2][0] == 'NP': sf.append(phrases[i][1] + ' ' + phrases[i + 1][1] + ' ' + phrases[i + 2][1]) elif phrases[i][0] == 'ADVP' and phrases[ i + 1][0] == 'ADJP' and phrases[i + 2][0] == 'NP': sf.append(phrases[i][1] + ' ' + phrases[i + 1][1] + ' ' + phrases[i + 2][1]) print SF print sf PSF = [] NSF = [] psf = [] nsf = [] for i in SF: blob = TextBlob(i) if blob.polarity > 0: PSF.append(i) elif blob.polarity < 0: NSF.append(i) elif blob.polarity == 0: pass for i in sf: blob = TextBlob(i) if blob.polarity > 0: psf.append(i) elif blob.polarity < 0: psf.append(i) elif blob.polarity == 0: pass print PSF print NSF print psf print nsf if (PSF and nsf) or (psf and NSF): return 1 else: return 0