def test_pretrained(self): tw = TextWiser(Embedding.TfIdf(pretrained=None, min_df=2), dtype=torch.float32) expected = torch.tensor( [[0.4813341796, 0.6198053956, 0.0000000000, 0.6198053956], [0.4091228545, 0.5268201828, 0.5268201828, 0.5268201828], [0.6133555174, 0.0000000000, 0.7898069024, 0.0000000000]], dtype=torch.float32) self._test_fit_transform(tw, expected) # Test loading from bytes with NamedTemporaryFile() as file: pickle.dump(tw._imp[0].vectorizer, file) file.seek(0) tw = TextWiser(Embedding.TfIdf(pretrained=file), dtype=torch.float32) predicted = tw.fit_transform(docs) self.assertTrue( torch.allclose(predicted, expected.to(device), atol=1e-6)) # Test loading from file file_path = self._get_test_path('data', 'tfidf.pkl') with open(file_path, 'wb') as fp: pickle.dump(tw._imp[0].vectorizer, fp) tw = TextWiser(Embedding.TfIdf(pretrained=file_path), dtype=torch.float32) predicted = tw.fit_transform(docs) self.assertTrue( torch.allclose(predicted, expected.to(device), atol=1e-6)) os.remove(file_path)
def test_pretrained_error(self): # Not a string with self.assertRaises(ValueError): TextWiser(Embedding.TfIdf(pretrained=3), dtype=torch.float32) # Not a path with self.assertRaises(ValueError): TextWiser(Embedding.TfIdf(pretrained='|||||||'), dtype=torch.float32) # Not a path on the embedding object with self.assertRaises(ValueError): _TfIdfEmbeddings(pretrained='|||||||')._init_vectorizer()
def test_num_components(self): # The natural # of components is 3. n_components = 2 # Restrict the # of components tw = TextWiser(Embedding.TfIdf(min_df=2), Transformation.SVD(n_components=n_components), dtype=torch.float32) predicted = tw.fit_transform(docs) self.assertEqual(predicted.shape[1], n_components) self._reset_seed() n_components = 200 # Expand the # of components tw = TextWiser(Embedding.TfIdf(min_df=2), Transformation.SVD(n_components=n_components), dtype=torch.float32) predicted = tw.fit_transform(docs) self.assertEqual(predicted.shape[1], n_components)
def test_fine_tuneable(self): tw = TextWiser(Embedding.TfIdf(min_df=2), Transformation.SVD(n_components=2), dtype=torch.float32, is_finetuneable=True) tw.fit(docs) embeddings1 = tw._imp[1].V.data.clone().detach() # Give a fake task to train embeddings on # Have a linear layer with a single output after pooling linear = nn.Linear(2, 1, bias=False) model = nn.Sequential(tw, linear).to(device).train() y_pred = model(docs) # Use ones as the target y_act = torch.ones_like(y_pred) # Optimize MSE using SGD criterion = nn.MSELoss() optimizer = optim.SGD(model.parameters(), lr=1e-3) # Calculate the loss & gradients optimizer.zero_grad() loss = criterion(y_pred, y_act) loss.backward() # The embedding layer should have gradients now self.assertIsNotNone([p for p in tw._imp[1].named_parameters() ][0][1].grad) # Update weights optimizer.step() # The weights should be updated if fine_tune is true, else it should be the same self.assertFalse(torch.allclose(embeddings1, tw._imp[1].V.data))
def test_v_in_parameters(self): n_components = 2 # Restrict the # of components tw = TextWiser(Embedding.TfIdf(min_df=2), Transformation.SVD(n_components=n_components), dtype=torch.float32) tw.fit(docs) self.assertIn('_imp.1.V', [p[0] for p in tw.named_parameters()])
def test_set_params(self): # Set the arguments in container classes tw = TextWiser(Embedding.TfIdf(min_df=5), Transformation.NMF(n_components=30), lazy_load=True) tw.set_params(embedding__min_df=10, transformations__0__n_components=10) self.assertEqual(tw.embedding.min_df, 10) self.assertEqual(tw.transformations[0].n_components, 10) # Set the arguments in implementation tw = TextWiser(Embedding.Doc2Vec(vector_size=2, min_count=1, workers=1)) tw.fit(docs) tw.set_params(_imp__0__seed=10) self.assertEqual(tw._imp[0].seed, 10) # Set the arguments in a schema schema = {'transform': ['tfidf', ['nmf', {'n_components': 30}]]} tw = TextWiser(Embedding.Compound(schema=schema)) tw.set_params(embedding__schema__transform__0__min_df=10, embedding__schema__transform__1__n_components=10) self.assertEqual(tw.embedding.schema['transform'][0][1]['min_df'], 10) self.assertEqual( tw.embedding.schema['transform'][1][1]['n_components'], 10) # Replace a part of the schema in a list tw.set_params(embedding__schema__transform__0='bow') self.assertEqual(tw.embedding.schema['transform'][0], 'bow') # Replace a part of the schema tw.set_params(embedding__schema__transform=['bow']) self.assertEqual(tw.embedding.schema['transform'][0], 'bow')
def test_min_components(self): try: with self.assertRaises(ValueError): TextWiser(Embedding.TfIdf(min_df=2), Transformation.UMAP(n_components=1), dtype=torch.float32) except ModuleNotFoundError: print('No UMAP found. Skipping the test. ...', end=" ", flush=True)
def test_fit_transform(self): tw = TextWiser(Embedding.TfIdf(min_df=2), dtype=torch.float32) expected = torch.tensor( [[0.4813341796, 0.6198053956, 0.0000000000, 0.6198053956], [0.4091228545, 0.5268201828, 0.5268201828, 0.5268201828], [0.6133555174, 0.0000000000, 0.7898069024, 0.0000000000]], dtype=torch.float32) self._test_fit_transform(tw, expected) self._test_fit_before_transform(tw, expected)
def test_fit_transform(self): tw = TextWiser(Embedding.TfIdf(min_df=2), Transformation.SVD(n_components=2), dtype=torch.float32) expected = torch.tensor( [[-0.8526761532, 0.5070778131], [-0.9837458134, 0.0636523664], [-0.7350711226, -0.6733918786]], dtype=torch.float32) self._test_fit_transform(tw, expected) self._reset_seed() self._test_fit_before_transform(tw, expected)
def test_fit_transform(self): tw = TextWiser(Embedding.TfIdf(min_df=2), Transformation.NMF(n_components=2), dtype=torch.float32) expected = torch.tensor( [[0.8865839243, 0.0000000000], [0.6736079454, 0.5221673250], [0.0203559380, 1.1122620106]], dtype=torch.float32) self._test_fit_transform(tw, expected) self._reset_seed() self._test_fit_before_transform(tw, expected, atol=1e-5)
def test_fit_transform(self): tw = TextWiser(Embedding.TfIdf(min_df=2), Transformation.LDA(n_components=2), dtype=torch.float32) expected = torch.tensor( [[0.7724367976, 0.2275632024], [0.5895692706, 0.4104307294], [0.2381444573, 0.7618555427]], dtype=torch.float32) self._test_fit_transform(tw, expected) self._reset_seed() self._test_fit_before_transform(tw, expected)
def test_fit_transform(self): try: tw = TextWiser(Embedding.TfIdf(min_df=1), Transformation.UMAP(init='random', n_neighbors=2, n_components=2), dtype=torch.float32) expected = torch.tensor([[-12.1613626480, 22.0555286407], [-11.3154125214, 22.4605998993], [-10.7626724243, 21.6793708801]], dtype=torch.float32) self._test_fit_transform(tw, expected) self._reset_seed() self._test_fit_before_transform(tw, expected) except ModuleNotFoundError: print('No UMAP found. Skipping the test. ...', end=" ", flush=True)
def test_min_components(self): with self.assertRaises(ValueError): TextWiser(Embedding.TfIdf(min_df=2), Transformation.SVD(n_components=1), dtype=torch.float32)
def test_finetune_validation(self): # Nothing is fine-tuneable if dtype is numpy with self.assertRaises(TypeError): with warnings.catch_warnings(): warnings.simplefilter("ignore") TextWiser(Embedding.Word(word_option=WordOptions.word2vec, pretrained='en_turian'), dtype=np.float32, is_finetuneable=True) # Word2Vec is fine-tuneable try: with warnings.catch_warnings(): warnings.simplefilter("ignore") TextWiser(Embedding.Word(word_option=WordOptions.word2vec, pretrained='en-turian'), dtype=torch.float32, is_finetuneable=True, lazy_load=True) except ValueError: self.fail("Word2vec is fine tuneable") # ELMo is not fine-tuneable, and should raise an error with self.assertRaises(ValueError): with warnings.catch_warnings(): warnings.simplefilter("ignore") TextWiser(Embedding.Word(word_option=WordOptions.elmo), dtype=torch.float32, is_finetuneable=True, lazy_load=True) # TfIdf is not fine-tuneable, and should raise an error with self.assertRaises(ValueError): TextWiser(Embedding.TfIdf(), dtype=torch.float32, is_finetuneable=True, lazy_load=True) # TfIdf is not fine-tuneable, but SVD is try: TextWiser(Embedding.TfIdf(), Transformation.SVD(), dtype=torch.float32, is_finetuneable=True, lazy_load=True) except ValueError: self.fail("SVD is fine tuneable") # LDA cannot propagate gradients, so the whole thing is not fine-tuneable with self.assertRaises(ValueError): with warnings.catch_warnings(): warnings.simplefilter("ignore") TextWiser(Embedding.Word(word_option=WordOptions.word2vec, pretrained='en'), Transformation.LDA(), dtype=torch.float32, is_finetuneable=True, lazy_load=True) schema = { 'concat': [{ 'transform': [('word2vec', { 'pretrained': 'en-turian' }), ('pool', { 'pool_option': 'max' })] }, { 'transform': ['tfidf', ('nmf', { 'n_components': 30 })] }] } # Word2Vec is fine-tuneable, therefore the whole schema is fine-tuneable try: TextWiser(Embedding.Compound(schema=schema), dtype=torch.float32, is_finetuneable=True, lazy_load=True) except ValueError: self.fail( "Any fine-tuneable weights is enough for the model to be fine-tuneable" ) # TfIdf is not fine-tuneable, but SVD is schema = {'transform': ['tfidf', 'svd']} try: TextWiser(Embedding.Compound(schema=schema), dtype=torch.float32, is_finetuneable=True, lazy_load=True) except ValueError: self.fail("SVD is fine tuneable")
def test_forward_before_fit(self): """Calling `forward` before `fit` should fail""" with self.assertRaises(NotImplementedError): TextWiser(Embedding.TfIdf()).transform('document')