'displayPeriod': 100, #Batch size 'batchSize': 4, #Learning rate for optimizer 'learningRate': 1e-4, 'numClasses': 10, 'epsilon': 1e-8, 'regularizer': 'none', 'regWeight': .3, #####ISTA PARAMS###### 'VStrideY': 2, 'VStrideX': 2, 'patchSizeX': 12, 'patchSizeY': 12, 'numV': 256, #####New encode parapms##### 'maxPool': True, #Controls max or avg pool 'preTrain': False, } #Allocate tensorflow object #This will build the graph tfObj = Supervised(params, trainDataObj) print("Done init") tfObj.runModel(trainDataObj, testDataObj=testDataObj, numTest=256) print("Done run") tfObj.closeSess()
'batchSize': 128, #Learning rate for optimizer 'learningRate': 1e-4, 'numClasses': 10, 'epsilon': 1e-8, 'regularizer': 'none', 'regWeight': .3, #####ISTA PARAMS###### 'VStrideY': 2, 'VStrideX': 2, 'patchSizeX': 12, 'patchSizeY': 12, 'numV': 128, #####New encode parapms##### 'maxPool': True, #Controls max or avg pool } #Allocate tensorflow object #This will build the graph tfObj = Supervised(params, trainDataObj.inputShape) print "Done init" tfObj.runModel(trainDataObj, testDataObj = testDataObj) print "Done run" tfObj.closeSess()
'outerSteps': 500, #1000000, 'innerSteps': 100, #300, #Batch size 'batchSize': 128, #Learning rate for optimizer 'learningRate': 1e-4, 'numClasses': 10, 'epsilon': 1e-8, 'regularizer': 'none', 'regWeight': .3, #####ISTA PARAMS###### 'VStrideY': 2, 'VStrideX': 2, 'patchSizeX': 12, 'patchSizeY': 12, 'numV': 128, #####New encode parapms##### 'maxPool': True, #Controls max or avg pool } #Allocate tensorflow object #This will build the graph tfObj = Supervised(params, trainDataObj.inputShape) print("Done init") tfObj.runModel(trainDataObj, testDataObj=testDataObj) print("Done run") tfObj.closeSess()
'learningRate': 1e-4, 'numClasses': 10, 'epsilon': 1e-8, 'regularizer': 'none', 'regWeight': .3, #####ISTA PARAMS###### 'VStrideY': 2, 'VStrideX': 2, 'patchSizeX': 12, 'patchSizeY': 12, 'numV': 256, #####New encode parapms##### 'maxPool': True, #Controls max or avg pool 'preTrain': False, } #Allocate tensorflow object #This will build the graph tfObj = Supervised(params, trainDataObj) print("Done init") tfObj.runModel(trainDataObj, testDataObj = testDataObj, numTest=256) print("Done run") tfObj.closeSess()