def store_prediction(self, sess, batch_x, batch_y, name): prediction = sess.run(self.net.predicter, feed_dict={ self.net.x: batch_x, self.net.y: batch_y, self.net.keep_prob: 1., self.net.block_size: 1 }) pred_shape = prediction.shape loss = sess.run(self.net.cost, feed_dict={ self.net.x: batch_x, self.net.y: util.crop_to_shape(batch_y, pred_shape), self.net.keep_prob: 1., self.net.block_size: 1 }) logging.info("Verification error= {:.1f}%, loss= {:.4f}".format( error_rate(prediction, util.crop_to_shape(batch_y, prediction.shape)), loss)) img = util.combine_img_prediction(batch_x, batch_y, prediction) util.save_image(img, "%s/%s.jpg" % (self.prediction_path, name)) return pred_shape
import numpy as np data_provider = image_util.ImageDataProvider("DRIVE700/test/*", data_suffix="_test.tif", mask_suffix='_manual1.png', n_class=2) net = unet.Unet(layers=4, features_root=8, channels=3, n_class=2) test_x, test_y = data_provider(1) prediction = net.predict("mode/drive100_0.92_700/model.ckpt", test_x) prediction = util.crop_to_shape(prediction, (20, 584, 565, 2)) AUC_ROC = metrics.roc_Auc(prediction, util.crop_to_shape(test_y, prediction.shape)) print("auc", AUC_ROC) acc = metrics.acc(prediction, util.crop_to_shape(test_y, prediction.shape)) print("acc:", acc) precision = metrics.precision(prediction, util.crop_to_shape(test_y, prediction.shape)) print("ppv:", precision) sen = metrics.sen(prediction, util.crop_to_shape(test_y, prediction.shape)) print("TPR:", sen) TNR = metrics.TNR(prediction, util.crop_to_shape(test_y, prediction.shape)) print("tnr:", TNR) f1 = metrics.f1score2(prediction, util.crop_to_shape(test_y, prediction.shape)) print("f1:", f1) img = util.combine_img_prediction(test_x, test_y, prediction) util.save_image(img, "19.jpg")
import os data_provider2 = image_util.ImageDataProvider("TNBC/test/*.png", data_suffix=".png", mask_suffix='_mask.png', n_class=2) data_provider = image_util.ImageDataProvider("Model_zoo/train_aug/train/*.png", data_suffix=".png", mask_suffix='_mask.png', n_class=2) output_path = "TNBC2_CKPT" net = unet.Unet(layers=4, features_root=6, channels=3, n_class=2) trainer = unet.Trainer(net, batch_size=8, verification_batch_size=4, optimizer="adam") path = trainer.train(data_provider, output_path, keep_prob=0.8, training_iters=32, epochs=100, display_step=2, restore=True) test_x, test_y = data_provider2(1) prediction = net.predict(path, test_x) error = unet.error_rate(prediction, util.crop_to_shape(test_y, prediction.shape)) print(error) img = util.combine_img_prediction(test_x, test_y, prediction) util.save_image(img, "tnbc2.jpg")
import numpy as np import os # data_provider2 = image_util.ImageDataProvider("CHASE_NEW/test/*",data_suffix="R.jpg", mask_suffix='R_1stHO.png', n_class=2) data_provider2 = image_util.ImageDataProvider("DRIVE700/test/*",data_suffix="_test.tif", mask_suffix='_manual1.png', n_class=2) #data_provider2 = image_util.ImageDataProvider("DriveTest1/*",data_suffix="_test.tif", mask_suffix='_manual1.gif', n_class=2) data_provider = image_util.ImageDataProvider("DRIVE700/train/*",data_suffix="_training.tif", mask_suffix='_manual1.png', n_class=2) output_path="mode/drive100_0.92_700" net = unet.Unet(layers=4, features_root=8, channels=3, n_class=2) trainer = unet.Trainer(net,batch_size=4,verification_batch_size=4,optimizer="adam") path = trainer.train(data_provider, output_path,keep_prob=0.92,training_iters=64, epochs=80,display_step=2,restore=False) test_x, test_y = data_provider2(20) prediction = net.predict(path, test_x) prediction=util.crop_to_shape(prediction, (20,584,565,2)) AUC_ROC = metrics.roc_Auc(prediction, util.crop_to_shape(test_y, prediction.shape)) print("auc:",AUC_ROC) acc=metrics.acc(prediction,util.crop_to_shape(test_y, prediction.shape)) print("acc:",acc) precision=metrics.precision(prediction,util.crop_to_shape(test_y, prediction.shape)) print("ppv:",precision) sen=metrics.sen(prediction,util.crop_to_shape(test_y, prediction.shape)) print("TPR:",sen) TNR=metrics.TNR(prediction,util.crop_to_shape(test_y, prediction.shape)) print("tnr:",TNR) f1=metrics.f1score2(prediction,util.crop_to_shape(test_y, prediction.shape)) print("f1:",f1) img = util.combine_img_prediction(test_x, test_y, prediction) util.save_image(img, "Drive_deep.jpg")
from tf_SDUnet import unet, util, image_util #preparing data loading data_provider = image_util.ImageDataProvider("dataset2/train/*.jpg", data_suffix=".jpg", mask_suffix='_mask.png', n_class=2) output_path = "out_put2" #setup & training net = unet.Unet(layers=6, features_root=16, channels=3, n_class=2) trainer = unet.Trainer(net) path = trainer.train(data_provider, output_path, training_iters=12, epochs=1) test_x, test_y = data_provider(1) print(test_x.shape) prediction = net.predict(path, test_x) print(prediction) unet.error_rate(prediction, util.crop_to_shape(test_y, prediction.shape)) img = util.combine_img_prediction(test_x, test_y, prediction) util.save_image(img, "voc_prediction.jpg")
from tf_SDUnet import unet, util, image_util data_provider2 = image_util.ImageDataProvider("TNBC/test/*.png",data_suffix=".png", mask_suffix='_mask.png', n_class=2) #setup & training net = unet.Unet(layers=4, features_root=6, channels=3, n_class=2) test_x, test_y = data_provider2(25) prediction = net.predict("TNBC2_CKPT/model.ckpt", test_x) print(test_y) error=unet.error_rate(prediction, util.crop_to_shape(test_y, prediction.shape)) print("test error:",error) img = util.combine_img_prediction(test_x, test_y, prediction) util.save_image(img, "TNBC_test13.jpg")
mask_suffix='_binary.tif', n_class=2) #data_provider = image_util.ImageDataProvider("Tissue_images/*.tif",data_suffix=".tif", mask_suffix='_binary.tif', n_class=2) data_provider = image_util.ImageDataProvider("tissue_aug/train/*.tif", data_suffix=".tif", mask_suffix='_binary.tif', n_class=2) output_path = "out_put_skip_aug3_160" #setup & training net = unet2.Unet(layers=4, features_root=8, channels=3, n_class=2) trainer = unet2.Trainer(net, batch_size=4, verification_batch_size=4, optimizer="adam") path = trainer.train(data_provider, output_path, keep_prob=0.8, training_iters=124, epochs=1, display_step=2, restore=True) test_x, test_y = data_provider2(14) prediction = net.predict(path, test_x) print(test_y) error = unet2.error_rate(prediction, util.crop_to_shape(test_y, prediction.shape)) print("test error:", error) img = util.combine_img_prediction(test_x, test_y, prediction) util.save_image(img, "test_aug_5.jpg")
optimizer="adam") path = trainer.train(data_provider, output_path, keep_prob=0.92, training_iters=48, epochs=100, display_step=2, restore=False) test_x, test_y = data_provider2(14) prediction = net.predict(path, test_x) #[batches, nx, ny, channels]. prediction = util.crop_to_shape(prediction, (14, 960, 999, 2)) AUC_ROC = metrics.roc_Auc(prediction, util.crop_to_shape(test_y, prediction.shape)) print("auc", AUC_ROC) acc = metrics.acc(prediction, util.crop_to_shape(test_y, prediction.shape)) print("acc:", acc) precision = metrics.precision(prediction, util.crop_to_shape(test_y, prediction.shape)) print("ppv:", precision) sen = metrics.sen(prediction, util.crop_to_shape(test_y, prediction.shape)) print("TPR:", sen) TNR = metrics.TNR(prediction, util.crop_to_shape(test_y, prediction.shape)) print("tnr:", TNR) f1 = metrics.f1score2(prediction, util.crop_to_shape(test_y, prediction.shape)) print("f1:", f1) img = util.combine_img_prediction(test_x, test_y, prediction) util.save_image(img, "Chase.jpg")
n_class=2) net = unet.Unet(layers=4, features_root=8, channels=3, n_class=2) test_x, test_y = data_provider2(1) prediction = net.predict("mode/CHASE100_0.93_1100/model.ckpt", test_x) print(prediction.shape) prediction = util.crop_to_shape(prediction, (14, 960, 999, 2)) AUC_ROC = metrics.roc_Auc(prediction, util.crop_to_shape(test_y, prediction.shape)) print("auc", AUC_ROC) acc = metrics.acc(prediction, util.crop_to_shape(test_y, prediction.shape)) print("acc:", acc) precision = metrics.precision(prediction, util.crop_to_shape(test_y, prediction.shape)) print("ppv:", precision) sen = metrics.sen(prediction, util.crop_to_shape(test_y, prediction.shape)) print("TPR:", sen) TNR = metrics.TNR(prediction, util.crop_to_shape(test_y, prediction.shape)) print("tnr:", TNR) f1 = metrics.f1score2(prediction, util.crop_to_shape(test_y, prediction.shape)) print("f1:", f1) # # print(prediction_tensor) # print(label_tensor) # print("AUC:" + str(value)) img = util.combine_img_prediction(test_x, test_y, prediction) util.save_image(img, "01R.jpg")
prediction)) print( "aji+:", stats_utils.get_fast_aji(util.crop_to_shape(test_y, prediction.shape), prediction)) # DQ,SQ=stats_utils.get_fast_panoptic_quality(util.crop_to_shape(test_y, prediction.shape),prediction) # print("DQ:",DQ) # print("SQ:",SQ) # print("PQ:",DQ*SQ) error = unet.error_rate(prediction, util.crop_to_shape(test_y, prediction.shape)) print("DT error:", error) # f1=unet.f1score2(prediction, util.crop_to_shape(test_y, prediction.shape)) # print("DTf1:",f1) img = util.combine_img_prediction(test_x, test_y, prediction) util.save_image(img, "DTtest.jpg") test_x, test_y = ST(8) prediction = net.predict(model, test_x) # # print( "dice:", stats_utils.get_dice_2(util.crop_to_shape(test_y, prediction.shape), prediction)) print( "aji:", stats_utils.get_aji(util.crop_to_shape(test_y, prediction.shape), prediction)) print( "aji+:",
from tf_SDUnet import unet, util, image_util,stats_utils,layers import tensorflow as tf import numpy as np Single = image_util.ImageDataProvider("test2/single/*.tif",data_suffix=".tif", mask_suffix='_binary.tif', n_class=2,shuffle_data=False) net = unet.Unet(layers=4, features_root=8, channels=3, n_class=2) test_x, test_y =Single(1) model="model/model_f8_0.88_flip_160/model.ckpt" prediction = net.predict(model, test_x) print("dice2:",stats_utils.get_dice_2(util.crop_to_shape(test_y, prediction.shape),prediction)) print("dice1",stats_utils.get_dice_1(util.crop_to_shape(test_y, prediction.shape),prediction)) print("f1:",unet.f1score2(prediction, util.crop_to_shape(test_y, prediction.shape))) print("aji:",stats_utils.get_aji(util.crop_to_shape(test_y, prediction.shape),prediction)) print("aji+:",stats_utils.get_fast_aji(util.crop_to_shape(test_y, prediction.shape),prediction)) error=unet.error_rate(prediction, util.crop_to_shape(test_y, prediction.shape)) print("error:",error) img = util.combine_img_prediction(test_x, test_y, prediction) util.save_image(img, "result/5698.jpg")
print(prediction.shape) prediction=util.crop_to_shape(prediction, (10,605,700,2)) print(prediction.shape) print(prediction) AUC_ROC = metrics.roc_Auc(prediction, util.crop_to_shape(test_y, prediction.shape)) print("auc",AUC_ROC) acc=metrics.acc(prediction,util.crop_to_shape(test_y, prediction.shape)) print("acc:",acc) precision=metrics.precision(prediction,util.crop_to_shape(test_y, prediction.shape)) print("ppv:",precision) sen=metrics.sen(prediction,util.crop_to_shape(test_y, prediction.shape)) print("TPR:",sen) TNR=metrics.TNR(prediction,util.crop_to_shape(test_y, prediction.shape)) print("tnr:",TNR) f1=metrics.f1score2(prediction,util.crop_to_shape(test_y, prediction.shape)) print("f1:",f1) # # print(prediction_tensor) # print(label_tensor) # print("AUC:" + str(value)) img = util.combine_img_prediction(test_x, test_y, prediction) util.save_image(img, "0236.jpg")
data_provider2 = image_util.ImageDataProvider("test/*.tif", data_suffix=".tif", mask_suffix='_binary.tif', n_class=2) data_provider = image_util.ImageDataProvider("Tissue_images/*.tif", data_suffix=".tif", mask_suffix='_binary.tif', n_class=2) output_path = "FCN_put" #setup & training net = FCN.fcn(channels=3, n_class=2) trainer = FCN.Trainer(net, batch_size=4, verification_batch_size=4, optimizer="adam") path = trainer.train(data_provider, output_path, dropout=0.9, training_iters=32, epochs=20, display_step=2) test_x, test_y = data_provider2(1) prediction = net.predict(path, test_x) print(prediction) print(test_y) error = FCN.error_rate(prediction, test_y) print("test error:", error) img = util.combine_img_predictionFCN(test_x, test_y, prediction) util.save_image(img, "FCN.jpg")
data_provider2 = image_util.ImageDataProvider("test/ST/*.tif", data_suffix=".tif", mask_suffix='_binary.tif', n_class=2, shuffle_data=False) #setup & training net = unet.Unet(layers=4, features_root=8, channels=3, n_class=2) test_x, test_y = data_provider2(14) prediction = net.predict("model_aug_f8_0.75_100/model.ckpt", test_x) print(test_y) error = unet.error_rate(prediction, util.crop_to_shape(test_y, prediction.shape)) print("test error:", error) f1 = unet.f1score2(prediction, util.crop_to_shape(test_y, prediction.shape)) # print(f1) # y_pred = np.argmax(prediction, axis=3)[0] # y_true = np.argmax(util.crop_to_shape(test_y, prediction.shape), axis=3)[0] # precision=F1test.precision(y_true,y_pred) # # f1=F1test.f1score(y_true,y_pred) print("f1", f1) img = util.combine_img_prediction(test_x, test_y, prediction) util.save_image(img, "test.jpg")
verification_batch_size=4, optimizer="adam") path = trainer.train(data_provider, output_path, keep_prob=0.93, training_iters=40, epochs=100, display_step=2, restore=False) test_x, test_y = data_provider2(10) prediction = net.predict(path, test_x) prediction = util.crop_to_shape(prediction, (10, 605, 700, 2)) AUC_ROC = metrics.roc_Auc(prediction, util.crop_to_shape(test_y, prediction.shape)) print("auc:", AUC_ROC) acc = metrics.acc(prediction, util.crop_to_shape(test_y, prediction.shape)) print("acc:", acc) precision = metrics.precision(prediction, util.crop_to_shape(test_y, prediction.shape)) print("ppv:", precision) sen = metrics.sen(prediction, util.crop_to_shape(test_y, prediction.shape)) print("TPR:", sen) TNR = metrics.TNR(prediction, util.crop_to_shape(test_y, prediction.shape)) print("tnr:", TNR) f1 = metrics.f1score2(prediction, util.crop_to_shape(test_y, prediction.shape)) print("f1:", f1) img = util.combine_img_prediction(test_x, test_y, prediction) util.save_image(img, "STARE.jpg")