Exemple #1
0
  def testNoTimeDependence(self):
    """Test for the case where all terms (quadratic, linear, shift) are null."""
    grid = grids.uniform_grid(
        minimums=[-10, -20],
        maximums=[10, 20],
        sizes=[201, 301],
        dtype=tf.float32)
    ys = self.evaluate(grid[0])
    xs = self.evaluate(grid[1])

    time_step = 0.1
    final_t = 1
    variance = 1

    final_cond = np.outer(_gaussian(ys, variance), _gaussian(xs, variance))
    final_values = tf.expand_dims(tf.constant(final_cond, dtype=tf.float32),
                                  axis=0)
    bound_cond = [(_zero_boundary, _zero_boundary),
                  (_zero_boundary, _zero_boundary)]
    step_fn = douglas_adi_step(theta=0.5)
    result = fd_solvers.step_back(
        start_time=final_t,
        end_time=0,
        coord_grid=grid,
        values_grid=final_values,
        time_step=time_step,
        one_step_fn=step_fn,
        boundary_conditions=bound_cond,
        dtype=grid[0].dtype)
    expected = final_cond  # No time dependence.
    self._assertClose(expected, result)
Exemple #2
0
  def _testDiffusionInDiagonalDirection(self, pack_second_order_coeff_fn):
    """Tests solving 2d diffusion equation involving mixed terms.

    The equation is `u_{t} + D u_{xx} / 2 +  D u_{yy} / 2 + D u_{xy} = 0`.
    The final condition is a gaussian centered at (0, 0) with variance sigma.

    The equation can be rewritten as `u_{t} + D u_{zz} = 0`, where
    `z = (x + y) / sqrt(2)`.

    Thus variance should evolve as `sigma + 2D(t_final - t)` along z dimension
    and stay unchanged in the orthogonal dimension:
    `u(x, y, t) = gaussian((x + y)/sqrt(2), sigma + 2D(t_final - t)) *
    gaussian((x - y)/sqrt(2), sigma)`.
    """
    dtype = tf.float32

    grid = grids.uniform_grid(
        minimums=[-10, -20], maximums=[10, 20], sizes=[201, 301], dtype=dtype)
    ys = self.evaluate(grid[0])
    xs = self.evaluate(grid[1])

    diff_coeff = 1  # D
    time_step = 0.1
    final_t = 3
    final_variance = 1

    def second_order_coeff_fn(t, location_grid):
      del t, location_grid
      return pack_second_order_coeff_fn(diff_coeff / 2, diff_coeff / 2,
                                        diff_coeff / 2)

    variance_along_diagonal = final_variance + 2 * diff_coeff * final_t

    def expected_fn(x, y):
      return (_gaussian((x + y) / _SQRT2, variance_along_diagonal) * _gaussian(
          (x - y) / _SQRT2, final_variance))

    expected = np.array([[expected_fn(x, y) for x in xs] for y in ys])

    final_values = tf.expand_dims(
        tf.constant(
            np.outer(
                _gaussian(ys, final_variance), _gaussian(xs, final_variance)),
            dtype=dtype),
        axis=0)
    bound_cond = [(_zero_boundary, _zero_boundary),
                  (_zero_boundary, _zero_boundary)]
    step_fn = douglas_adi_step(theta=0.5)
    result = fd_solvers.step_back(
        start_time=final_t,
        end_time=0,
        coord_grid=grid,
        values_grid=final_values,
        time_step=time_step,
        one_step_fn=step_fn,
        boundary_conditions=bound_cond,
        second_order_coeff_fn=second_order_coeff_fn,
        dtype=grid[0].dtype)

    self._assertClose(expected, result)
Exemple #3
0
  def testAnisotropicDiffusion(self):
    """Tests solving 2d diffusion equation.

    The equation is `u_{t} + Dx u_{xx} + Dy u_{yy} = 0`.
    The final condition is a gaussian centered at (0, 0) with variance sigma.
    The variance along each dimension should evolve as `sigma + 2 Dx t` and
    `sigma + 2 Dy (t_final - t)`.
    """
    grid = grids.uniform_grid(
        minimums=[-10, -20],
        maximums=[10, 20],
        sizes=[201, 301],
        dtype=tf.float32)
    ys = self.evaluate(grid[0])
    xs = self.evaluate(grid[1])

    diff_coeff_x = 0.4  # Dx
    diff_coeff_y = 0.25  # Dy
    time_step = 0.1
    final_t = 1
    final_variance = 1

    def quadratic_coeff_fn(t, location_grid):
      del t, location_grid
      u_xx = diff_coeff_x
      u_yy = diff_coeff_y
      u_xy = None
      return [[u_yy, u_xy], [u_xy, u_xx]]

    final_values = tf.expand_dims(
        tf.constant(
            np.outer(
                _gaussian(ys, final_variance), _gaussian(xs, final_variance)),
            dtype=tf.float32),
        axis=0)
    bound_cond = [(_zero_boundary, _zero_boundary),
                  (_zero_boundary, _zero_boundary)]
    step_fn = douglas_adi_step(theta=0.5)
    result = fd_solvers.step_back(
        start_time=final_t,
        end_time=0,
        coord_grid=grid,
        values_grid=final_values,
        time_step=time_step,
        one_step_fn=step_fn,
        boundary_conditions=bound_cond,
        second_order_coeff_fn=quadratic_coeff_fn,
        dtype=grid[0].dtype)

    variance_x = final_variance + 2 * diff_coeff_x * final_t
    variance_y = final_variance + 2 * diff_coeff_y * final_t
    expected = np.outer(_gaussian(ys, variance_y), _gaussian(xs, variance_x))

    self._assertClose(expected, result)
Exemple #4
0
  def testSimpleDrift(self):
    """Tests solving 2d drift equation.

    The equation is `u_{t} + vx u_{x} + vy u_{y} = 0`.
    The final condition is a gaussian centered at (0, 0) with variance sigma.
    The gaussian should drift with velocity `[vx, vy]`.
    """
    grid = grids.uniform_grid(
        minimums=[-10, -20],
        maximums=[10, 20],
        sizes=[201, 301],
        dtype=tf.float32)
    ys = self.evaluate(grid[0])
    xs = self.evaluate(grid[1])

    time_step = 0.01
    final_t = 3
    variance = 1
    vx = 0.1
    vy = 0.3

    def first_order_coeff_fn(t, location_grid):
      del t, location_grid
      return [vy, vx]

    final_values = tf.expand_dims(
        tf.constant(
            np.outer(_gaussian(ys, variance), _gaussian(xs, variance)),
            dtype=tf.float32),
        axis=0)

    bound_cond = [(_zero_boundary, _zero_boundary),
                  (_zero_boundary, _zero_boundary)]

    result = fd_solvers.step_back(
        start_time=final_t,
        end_time=0,
        coord_grid=grid,
        values_grid=final_values,
        time_step=time_step,
        one_step_fn=douglas_adi_step(theta=0.5),
        boundary_conditions=bound_cond,
        first_order_coeff_fn=first_order_coeff_fn,
        dtype=grid[0].dtype)

    expected = np.outer(
        _gaussian(ys + vy * final_t, variance),
        _gaussian(xs + vx * final_t, variance))

    self._assertClose(expected, result)
Exemple #5
0
  def testShiftTerm(self):
    """Simple test for the shift term.

    The equation is `u_{t} + a u = 0`, the solution is
    `u(x, y, t) = exp(-a(t - t_final)) u(x, y, t_final)`
    """
    grid = grids.uniform_grid(
        minimums=[-10, -20],
        maximums=[10, 20],
        sizes=[201, 301],
        dtype=tf.float32)
    ys = self.evaluate(grid[0])
    xs = self.evaluate(grid[1])

    time_step = 0.1
    final_t = 1
    variance = 1
    a = 2

    def zeroth_order_coeff_fn(t, location_grid):
      del t, location_grid
      return a

    expected = (
        np.outer(_gaussian(ys, variance), _gaussian(xs, variance)) *
        np.exp(a * final_t))

    final_values = tf.expand_dims(
        tf.constant(
            np.outer(_gaussian(ys, variance), _gaussian(xs, variance)),
            dtype=tf.float32),
        axis=0)
    bound_cond = [(_zero_boundary, _zero_boundary),
                  (_zero_boundary, _zero_boundary)]
    step_fn = douglas_adi_step(theta=0.5)
    result = fd_solvers.step_back(
        start_time=final_t,
        end_time=0,
        coord_grid=grid,
        values_grid=final_values,
        time_step=time_step,
        one_step_fn=step_fn,
        boundary_conditions=bound_cond,
        zeroth_order_coeff_fn=zeroth_order_coeff_fn,
        dtype=grid[0].dtype)

    self._assertClose(expected, result)
Exemple #6
0
  def testAnisotropicDiffusion_WithRobinBoundaries(self):
    """Tests solving 2d diffusion equation with Robin boundary conditions."""
    time_step = 0.01
    final_t = 1
    x_min = -20
    x_max = 20
    y_min = -10
    y_max = 10

    grid = grids.uniform_grid(
        minimums=[y_min, x_min],
        maximums=[y_max, x_max],
        sizes=[201, 301],
        dtype=tf.float32)
    ys = self.evaluate(grid[0])
    xs = self.evaluate(grid[1])

    def second_order_coeff_fn(t, location_grid):
      del t, location_grid
      return [[2, None], [None, 1]]

    def lower_bound_x(t, location_grid):
      del location_grid
      f = tf.exp(t) * tf.sin(ys / 2) * (
          np.sin(x_min / _SQRT2) - np.cos(x_min / _SQRT2) / _SQRT2)
      return 1, 1, tf.expand_dims(f, 0)

    def upper_bound_x(t, location_grid):
      del location_grid
      f = tf.exp(t) * tf.sin(ys / 2) * (
          np.sin(x_max / _SQRT2) + 2 * np.cos(x_max / _SQRT2) / _SQRT2)
      return 1, 2, tf.expand_dims(f, 0)

    def lower_bound_y(t, location_grid):
      del location_grid
      f = tf.exp(t) * tf.sin(xs / _SQRT2) * (
          np.sin(y_min / 2) - 3 * np.cos(y_min / 2) / 2)
      return 1, 3, tf.expand_dims(f, 0)

    def upper_bound_y(t, location_grid):
      del location_grid
      f = tf.exp(t) * tf.sin(
          xs / _SQRT2) * (2 * np.sin(y_max / 2) + 3 * np.cos(y_max / 2) / 2)
      return 2, 3, tf.expand_dims(f, 0)

    expected = np.outer(np.sin(ys / 2), np.sin(xs / _SQRT2))

    final_values = tf.expand_dims(
        tf.constant(
            np.outer(np.sin(ys / 2), np.sin(xs / _SQRT2)) * np.exp(final_t),
            dtype=tf.float32),
        axis=0)
    bound_cond = [(lower_bound_y, upper_bound_y),
                  (lower_bound_x, upper_bound_x)]
    step_fn = douglas_adi_step(theta=0.5)
    result = fd_solvers.step_back(
        start_time=final_t,
        end_time=0,
        coord_grid=grid,
        values_grid=final_values,
        time_step=time_step,
        one_step_fn=step_fn,
        boundary_conditions=bound_cond,
        second_order_coeff_fn=second_order_coeff_fn,
        dtype=grid[0].dtype)

    self._assertClose(expected, result)
Exemple #7
0
  def testAnisotropicDiffusion_WithDirichletBoundaries(self):
    """Tests solving 2d diffusion equation with Dirichlet boundary conditions.

    The equation is `u_{t} + u_{xx} + 2 u_{yy} = 0`.
    The final condition is `u(t=1, x, y) = e * sin(x/sqrt(2)) * cos(y / 2)`.
    The following function satisfies this PDE and final condition:
    `u(t, x, y) = exp(t) * sin(x / sqrt(2)) * cos(y / 2)`.
    We impose Dirichlet boundary conditions using this function:
    `u(t, x_min, y) = exp(t) * sin(x_min / sqrt(2)) * cos(y / 2)`, etc.
    The other tests below are similar, but with other types of boundary
    conditions.
    """
    time_step = 0.01
    final_t = 1
    x_min = -20
    x_max = 20
    y_min = -10
    y_max = 10

    grid = grids.uniform_grid(
        minimums=[y_min, x_min],
        maximums=[y_max, x_max],
        sizes=[201, 301],
        dtype=tf.float32)
    ys = self.evaluate(grid[0])
    xs = self.evaluate(grid[1])

    def second_order_coeff_fn(t, location_grid):
      del t, location_grid
      return [[2, None], [None, 1]]

    @dirichlet
    def lower_bound_x(t, location_grid):
      del location_grid
      f = tf.exp(t) * np.sin(x_min / _SQRT2) * tf.sin(ys / 2)
      return tf.expand_dims(f, 0)

    @dirichlet
    def upper_bound_x(t, location_grid):
      del location_grid
      f = tf.exp(t) * np.sin(x_max / _SQRT2) * tf.sin(ys / 2)
      return tf.expand_dims(f, 0)

    @dirichlet
    def lower_bound_y(t, location_grid):
      del location_grid
      f = tf.exp(t) * tf.sin(xs / _SQRT2) * np.sin(y_min / 2)
      return tf.expand_dims(f, 0)

    @dirichlet
    def upper_bound_y(t, location_grid):
      del location_grid
      f = tf.exp(t) * tf.sin(xs / _SQRT2) * np.sin(y_max / 2)
      return tf.expand_dims(f, 0)

    expected = np.outer(np.sin(ys / 2), np.sin(xs / _SQRT2))

    final_values = tf.expand_dims(
        tf.constant(
            np.outer(np.sin(ys / 2), np.sin(xs / _SQRT2)) * np.exp(final_t),
            dtype=tf.float32),
        axis=0)
    bound_cond = [(lower_bound_y, upper_bound_y),
                  (lower_bound_x, upper_bound_x)]
    step_fn = douglas_adi_step(theta=0.5)
    result = fd_solvers.step_back(
        start_time=final_t,
        end_time=0,
        coord_grid=grid,
        values_grid=final_values,
        time_step=time_step,
        one_step_fn=step_fn,
        boundary_conditions=bound_cond,
        second_order_coeff_fn=second_order_coeff_fn,
        dtype=grid[0].dtype)

    self._assertClose(expected, result)