# tensorboard --logdir [LOG_DIR] journalist = tf.train.SummaryWriter(LOG_DIR) # Brain maps from observation to Q values for different actions. # Here it is a done using a multi layer perceptron with 2 hidden # layers brain = MLP([4,], [10, 4], [tf.tanh, tf.identity]) # The optimizer to use. Here we use RMSProp as recommended # by the publication optimizer = tf.train.RMSPropOptimizer(learning_rate= 0.001, decay=0.9) # DiscreteDeepQ object current_controller = DiscreteDeepQ(4, 4, brain, optimizer, session, discount_rate=0.9, exploration_period=100, max_experience=10000, store_every_nth=1, train_every_nth=4, target_network_update_rate=0.1, summary_writer=journalist) session.run(tf.initialize_all_variables()) session.run(current_controller.target_network_update) # graph was not available when journalist was created journalist.add_graph(session.graph_def) # In[10]: performances = [] try: for game_idx in range(2000): game = DiscreteHill()
def main(desired_iterations, save_path): # Define a log file to use with tensorboard # Not that we currently make use of tensorboard at all LOG_DIR = tempfile.mkdtemp() print "Tensorboard Log: " + LOG_DIR + '\n' # The directory to save the animations to SAVE_DIR = save_path # Define the simulation sim = Planning(get_noodle_environment()) # Tensorflow! tf.reset_default_graph() session = tf.InteractiveSession() journalist = tf.train.SummaryWriter(LOG_DIR) brain = MLP([ sim.observation_size, ], [200, 200, sim.num_actions], [tf.tanh, tf.tanh, tf.identity]) optimizer = tf.train.RMSPropOptimizer(learning_rate=0.001, decay=0.9) # DiscreteDeepQ object current_controller = DiscreteDeepQ(sim.observation_size, sim.num_actions, brain, optimizer, session, random_action_probability=0.2, discount_rate=0.9, exploration_period=1000, max_experience=10000, store_every_nth=1, train_every_nth=1, summary_writer=journalist) # Initialize the session session.run(tf.initialize_all_variables()) session.run(current_controller.target_network_update) # journalist.add_graph(session.graph) # Run the simulation and let the robot learn num_simulations = 0 iterations_needed = [] total_rewards = [] try: for game_idx in range(desired_iterations + 1): current_random_prob = current_controller.random_action_probability update_random_prob = game_idx != 0 and game_idx % 200 == 0 if update_random_prob and 0.01 < current_random_prob <= 0.1: current_controller.random_action_probability = current_random_prob - 0.01 elif update_random_prob and 0.1 < current_random_prob: current_controller.random_action_probability = current_random_prob - 0.1 game = Planning(get_noodle_environment()) game_iterations = 0 observation = game.observe() while not game.is_over(): action = current_controller.action(observation) reward = game.collect_reward(action) new_observation = game.observe() current_controller.store(observation, action, reward, new_observation) current_controller.training_step() observation = new_observation game_iterations += 1 total_rewards.append(sum(game.collected_rewards)) iterations_needed.append(game_iterations) rewards = [] if game_idx % 50 == 0: print "\rGame %d:\nIterations before end: %d." % ( game_idx, game_iterations) if game.collected_rewards[-1] == 10: print "Hit target!" print "Total Rewards: %s\n" % (sum(game.collected_rewards)) if SAVE_DIR is not None: game.save_path(SAVE_DIR, game_idx) except KeyboardInterrupt: print "Interrupted" # Plot the iterations and reward plt.figure(figsize=(12, 8)) plt.plot(total_rewards, label='Reward') # plt.plot(iterations_needed, label='Iterations') plt.legend() plt.show()
# layers brain = MLP([ g.observation_size, ], [200, 200, g.num_actions], [tf.tanh, tf.tanh, tf.identity]) # The optimizer to use. Here we use RMSProp as recommended # by the publication optimizer = tf.train.RMSPropOptimizer(learning_rate=0.001, decay=0.9) # DiscreteDeepQ object current_controller = DiscreteDeepQ(g.observation_size, g.num_actions, brain, optimizer, session, discount_rate=0.99, exploration_period=5000, max_experience=10000, minibatch_size=32, store_every_nth=4, train_every_nth=4, summary_writer=journalist) session.run(tf.initialize_all_variables()) session.run(current_controller.target_network_update) # graph was not available when journalist was created journalist.add_graph(session.graph_def) # In[12]: FPS = 30 ACTION_EVERY = 3
input_size, ], [64, 64, 1], [tf.sigmoid, tf.sigmoid, tf.identity], scope="mlp_action3") ]) # The optimizer to use. Here we use RMSProp as recommended # by the publication optimizer = tf.train.RMSPropOptimizer(learning_rate=0.0001, decay=0.9) # DiscreteDeepQ object current_controller = DiscreteDeepQ(input_size, num_actions, brain, optimizer, session, discount_rate=0.95, target_network_update_rate=0.005, exploration_period=5000, max_experience=10000, store_every_nth=4, train_every_nth=4, summary_writer=journalist) init_all_vars_op = tf.initialize_variables(tf.all_variables(), name='init_all_vars_op') session.run(tf.initialize_all_variables()) #for saving graph state, trainable variable values for variable in tf.trainable_variables(): tf.identity(variable, name="readVariable") tf.assign(variable,
print(LOG_DIR) journalist = tf.train.SummaryWriter(LOG_DIR) brain = MLP([ 4, ], [32, 64, N], [tf.tanh, tf.tanh, tf.identity]) optimizer = tf.train.RMSPropOptimizer(learning_rate=0.0001, decay=0.9) current_controller = DiscreteDeepQ(4, N, brain, optimizer, session, discount_rate=0.9, exploration_period=100000, max_experience=10000, minibatch_size=64, random_action_probability=0.05, store_every_nth=1, train_every_nth=4, target_network_update_rate=0.1, summary_writer=journalist) session.run(tf.initialize_all_variables()) session.run(current_controller.target_network_update) journalist.add_graph(session.graph_def) performances = [] dt = 0.02 try:
# tensorboard --logdir [LOG_DIR] journalist = tf.train.SummaryWriter(LOG_DIR) # Brain maps from observation to Q values for different actions. # Here it is a done using a multi layer perceptron with 2 hidden # layers brain = MLP([n_prev_frames * 4 + n_prev_frames - 1,], [4], [tf.identity]) # The optimizer to use. Here we use RMSProp as recommended # by the publication optimizer = tf.train.RMSPropOptimizer(learning_rate= 0.001, decay=0.9) # DiscreteDeepQ object current_controller = DiscreteDeepQ(n_prev_frames * 4 + n_prev_frames - 1, 4, brain, optimizer, session, discount_rate=0.9, exploration_period=100, max_experience=10000, store_every_nth=1, train_every_nth=4, target_network_update_rate=0.1, summary_writer=journalist) session.run(tf.initialize_all_variables()) session.run(current_controller.target_network_update) # graph was not available when journalist was created journalist.add_graph(session.graph_def) # In[330]: performances = [] try: for game_idx in range(2000): game = DiscreteHill()
class MLDaemon: """MLDaemon of ASCAR All public members are thread-safe. :type controller: DiscreteDeepQ :type opt: dict :type conf: dict :type session: tf.Session """ controller = None # Tensorflow controller for MLP session = None # Tensorflow session debugging_level = 0 # debug level for log disable_training = False # training default is enable enable_tuning = False # tuning default is set to disable stop_requested = False # stop training and action deciding stopped = True # stop daemon opt = None # option configuration for deep learning conf = None # all configurations delay_between_actions = 1 # seconds between actions exploration_period = 5000 # exploration interval in one period start_random_rate = 0.5 # random rate for selecting samples checkpoint_time = 1800 # time of saving each checkpoint last_observation = None # last observation used in training process last_action = None # last set of parameter configurations last_step = None # last set of parameter step size new_action = None # new action that will be broadcast to storage system save_path = None # save path of model and log file cumulative_reward = 0 # cumulative rewards that Deep Q learning get at the end test_number_of_steps_after_restore = 0 # number of test steps after restore tensorflow model memcache_last_rowid = 0 # lastest row of memcache def __init__(self, conf: dict = None, opt: dict = None): tf.disable_v2_behavior() # disable tensorflow version 2 # get debugging level from config file if 'mldaemon_debugging_level' in conf['log']: self.debugging_level = conf['log']['mldaemon_debugging_level'] # assign configuration and option self.opt = opt self.conf = conf # get directory for saving model and log_dir self.save_path = os.path.dirname(conf['replaydb']['dbfile']) self.disable_training = self.opt[ 'disable_training'] # get disable_training option from config file self.minibatch_size = self.opt[ 'minibatch_size'] # mini batch size for training in one observation (Size of PIs in one row of pi db) self.ticks_per_observation = self.opt[ 'ticks_per_observation'] # Number of Ticks (depends of tick_len) per 1 observation self.observation_size = len(list(self.conf['node']['client_id'].values())) * \ len(self.conf['ceph-param']) * self.ticks_per_observation # setup tuning system configuration (Description is at the beginning) if 'delay_between_actions' in opt: self.delay_between_actions = opt['delay_between_actions'] if 'exploration_period' in opt: self.exploration_period = opt['exploration_period'] if 'start_random_rate' in opt: self.start_random_rate = opt['start_random_rate'] if 'checkpoint_time' in opt: self.checkpoint_time = opt['checkpoint_time'] self.enable_tuning = self.opt['enable_tuning'] # Initialize database and retrieve data from database self.db = ReplayDB(self.opt, self.conf) self.db.refresh_memcache() # Store default action default = [] default_step = [] for param in self.conf['ceph-param']: val = list(param.values())[0] default.append(val['default']) default_step.append(val['step']) self.last_action = default self.last_step = default_step # make temp file for storing tensorflow log self.LOG_DIR = tempfile.mkdtemp() logger.info( f"LOG_DIR is locate at {self.LOG_DIR}. To enable Tensorboard run 'tensorboard --logdir [LOG_DIR]'" ) def start(self): """Start MLDaemon This function create tensorflow controller and running the tuning by iteratively training and choose action. """ if self.debugging_level >= 1: import cProfile import io import pstats pr = cProfile.Profile() pr.enable() logger.info(f"Connected to database {self.conf['replaydb']['dbfile']}") # set stopped to False, so daemon can run self.stopped = False logger.info('Starting MLDaemon...') try: # TensorFlow business - it is always good to reset a graph before creating a new controller. ops.reset_default_graph() # ? shall we use InteractiveSession()? self.session = tf.Session() # tf.InteractiveSession() # This little guy will let us run tensorboard # tensorboard --logdir [LOG_DIR] journalist = tf.summary.FileWriter(self.LOG_DIR) # Brain maps from observation to Q values for different actions. # Here it is a done using a multi layer perceptron with 2 hidden # layers hidden_layer_size = max(int(self.observation_size * 1.2), 200) logger.info('Observation size {0}, hidden layer size {1}'.format( self.observation_size, hidden_layer_size)) brain = MLP([ self.observation_size, ], [hidden_layer_size, hidden_layer_size, self.opt['num_actions']], [tf.tanh, tf.tanh, tf.identity]) # The optimizer to use. Here we use RMSProp as recommended # by the publication optimizer = tf.train.RMSPropOptimizer(learning_rate=0.001, decay=0.9) # DiscreteDeepQ object self.controller = DiscreteDeepQ( (self.observation_size, ), self.opt['num_actions'], brain, optimizer, self.session, discount_rate=0.99, start_random_rate=self.start_random_rate, exploration_period=self.exploration_period, random_action_probability=self. opt['random_action_probability'], train_every_nth=1, summary_writer=journalist, k_action=int(self.opt['k_val'])) self.session.run(tf.initialize_all_variables()) self.session.run(self.controller.target_network_update) #checks if there is a model to be loaded before updating the graph if os.path.isfile(os.path.join(self.save_path, 'model')): self.controller.restore(self.save_path) logger.info('Loaded saved model from ' + self.save_path) else: logger.info('No saved model found') self.test_number_of_steps_after_restore = self.controller.actions_executed_so_far # graph was not available when journalist was created journalist.add_graph(self.session.graph) last_action_second = 0 # last action timestep last_training_step_duration = 0 # last training duration last_checkpoint_time = time.time() # last checkpoint while not self.stop_requested: begin_time = time.time() # set begin time to current time # Run training step logger.info('Start training step...') minibatch_size, prediction_error = self._do_training_step() if minibatch_size > 0: # Check checkpoint time for every self.checkpoint_time logger.info( f'Time before checkpoint: {self.checkpoint_time - (time.time() - last_checkpoint_time)}' ) if time.time( ) - last_checkpoint_time > self.checkpoint_time: # save controller checkpoint cp_path = os.path.join( self.save_path, 'checkpoint_' + time.strftime('%Y-%m-%d_%H-%M-%S')) os.mkdir(cp_path) self.controller.save(cp_path) # update checkpoint time last_checkpoint_time = time.time() logger.info('Checkpoint saved in ' + cp_path) # update last training duration last_training_step_duration = time.time() - begin_time logger.info( 'Finished {step}th training step in {time} seconds ' 'using {mb} samples with prediction error {error}.'. format(step=self.controller.iteration, time=last_training_step_duration, mb=minibatch_size, error=prediction_error)) else: logger.info('Not enough data for training yet.') # Check if it is time for tuning # (check if duration since last action passed compare to time left before next actions) if time.time() - ( last_action_second + 0.5 ) >= self.delay_between_actions - last_training_step_duration: if self.enable_tuning: logger.debug('Start tuning step...') try: # Update memcache for next traininf interval self.db.refresh_memcache() except: pass # get sleep time either 0 or what is left until next action is start sleep_time = max( 0, self.delay_between_actions - (time.time() - (last_action_second + 0.5))) if sleep_time > 0.05: # Do garbage cleaning up before long sleeping gc.collect() sleep_time = max( 0, self.delay_between_actions - (time.time() - (last_action_second + 0.5))) if sleep_time > 0.0001: logger.debug(f'Sleeping {sleep_time} seconds') # Welp, basically sleep time.sleep(sleep_time) # Do action step ts = int(time.time()) self._do_action_step(ts) # Update action to current time last_action_second = ts else: logger.debug('Tuning disabled.') # Check for new data every 200 steps to reduce checking overhead if self.controller.number_of_times_train_called % 200 == 0: try: self.db.refresh_memcache() pass except: pass # We always print out the reward to the log for analysis logger.info(f'Cumulative reward: {self.cumulative_reward}') # Clean log at the end for next run flush_log() finally: # set stopped to True, so daemon can properly stop self.stopped = True # controller.save should not work here as the controller is still NoneType # self.controller.save(self.save_path) logger.info('MLDaemon stopped.') if self.debugging_level >= 1: pr.disable() s = io.StringIO() sortby = 'cumulative' ps = pstats.Stats(pr, stream=s).sort_stats(sortby) ps.print_stats() print(s.getvalue()) @staticmethod def store(*unused): pass def _do_training_step(self) -> (int, float): """Do a training step This function is NOT thread-safe and can only be called within the worker thread. Raises: RuntimeError: Training is set to disable Returns: (int, float): size of the mini batch, prediction error """ if not self.disable_training: # Get training batch from memcache in replay database mini_batch = self.get_minibatch() if mini_batch: logger.info(f'Retrieve batch size: {len(mini_batch)}') return len(mini_batch), self.controller.training_step( mini_batch) else: return 0, None else: raise RuntimeError('Training is disabled') def _do_action_step(self, ts): """ Do an action step This function is NOT thread-safe and can only be called within the worker thread. Raises: RuntimeError: Tuning is disable, so no action will be perform """ if not self.enable_tuning: raise RuntimeError('Tuning is disabled') try: # get new observation new_observation = self.observe() # collect reward reward = self.collect_reward() except BaseException as e: logger.info('{0}. Skipped taking action.'.format(str(e))) traceback.print_exc() return # Store last transition. This is only needed for the discrete hill test case. if self.last_observation is not None: # TODO: Implement store function (CAPES haven't implement this function yet) self.store(self.last_observation, self.last_action, reward, new_observation) pass # get action from new observation self.new_action = self.controller.action(new_observation) # Perform action self.perform_action(self.new_action, ts) # Update last observation to current one self.last_observation = new_observation def get_minibatch(self): """Get mini batch for training This function is NOT thread-safe and can only be called within the worker thread. It calls ReplayDB to retrieve mini batch Returns: list: mini batch containing timestep, action, reward of the action, observation of a current timestep, and next observation """ # We need at least ticks_per_observation+1 ticks for one sample if len(self.db.memcache) < self.ticks_per_observation + 1: return None result = [] # mini batch that will be return in the end required_samples = self.minibatch_size # samples per batch while True: # remaining size in memcache subtracted by ticks per observation total_sample_size = len( self.db.memcache) - self.ticks_per_observation # If possible sample size is not enough if total_sample_size <= len(result): return result # get required sample size with regards to number of sample left in memcache required_samples = min(total_sample_size, required_samples) # The last idx has to be excluded so it won't be added to bad_idx set (last idx # is not yet decided on action) # pick sample index at random from tick_per_observation -1 ticks to last ticks # with size of remaining required sample # Random a sample idx with required_sample size sample_idx = random.sample( range(self.ticks_per_observation - 1, len(self.db.memcache) - 1), required_samples - len(result)) for i in sample_idx: try: # get observation and next observation from sample index observ = self.get_observation_by_cache_idx(i) observ_next = self.get_next_observation_by_cache_idx(i) # calculate reward from observation of current step and next step nomalize_total_lat = self.inverse_norm_latency(self._calc_total_latency(observ_next)) - \ self.inverse_norm_latency(self._calc_total_latency(observ)) reward = (self._calc_total_throughput(observ_next) - self._calc_total_throughput(observ) ) + nomalize_total_lat # The final ts is only used in test cases # append data into result as tuple ts = self.db.memcache[i][0] action = self.db.memcache[i][1] # Prevent getting observation without action append to training batch if (action != [-1]) and ( action != [None] * len(self.conf['ceph-param'])): result.append( (observ, action, reward, observ_next, ts)) if len(result) == required_samples: logger.debug( f'Retrieved mini batach with data: {result}') return result except NotEnoughDataError: logger.info(f'NotEnoughDataError for memcache idx {i}') def inverse_norm_latency(self, x): """ Normalize inverse of latency value Normalize of inverse latency value to have the same range of value as bandwith Returns: float: a normalize inverse of latency value """ if (self.opt['min_latency'] > 0): inv_min_lat = 1 / self.opt['min_latency'] else: inv_min_lat = 0 if (self.opt['max_latency'] > 0): inv_max_lat = 1 / self.opt['max_latency'] else: inv_max_lat = 0 if (x > 0): inv_lat = 1 / x else: inv_lat = 0 return (inv_lat - inv_min_lat) * (self.opt['max_bandwidth'] - self.opt['min_bandwidth']) / ( inv_max_lat - inv_min_lat) def observe(self) -> np.ndarray: """ Return lastest observation vector using memcache. Get observation vector using memcache Raises: NotEnoughDataError: ticks in memcache is not enough NotEnoughDataError: cannot get observation from self.get_observation_by_cache_idx(idx) Returns: np.ndarray: Observation at index idx """ err_msg = 'No valid observation in the past two seconds' # If ticks in memcache is not enough if len(self.db.memcache) < self.ticks_per_observation: raise NotEnoughDataError(err_msg) # Loop from last ticks (last memcache index) to at least third last ticks or ticks_per_observation tick for idx in range( len(self.db.memcache) - 1, max(len(self.db.memcache) - 3, self.ticks_per_observation - 1), -1): try: # Return lastest possible observation return self.get_observation_by_cache_idx(idx) except NotEnoughDataError: pass # No observation found, so raise with err_msg raise NotEnoughDataError(err_msg) def collect_reward(self): """ Reward is the sum of read throughput + write throughput of clients Return reward for the last observation Returns: float: reward from current total thoughput and previous total throughput """ observ, prev_observ = self.db.get_last_n_observation(2) nomalize_total_lat = self.inverse_norm_latency(self._calc_total_latency(observ)) - \ self.inverse_norm_latency(self._calc_total_latency(prev_observ)) return (self._calc_total_throughput(observ) - self._calc_total_throughput(prev_observ)) + nomalize_total_lat def get_observation_by_cache_idx(self, idx: int) -> np.ndarray: """ Get observation from index Args: idx (int): observation index Raises: NotEnoughDataError: Index is greater than tick_per_observation NotEnoughDataError: Index does not belong to the same observation NotEnoughDataError: Missing entry exceed the missing_entry_tolerance Returns: np.ndarray: observation data of the index """ # Check if idx is out of range assert 0 <= idx < len(self.db.memcache) # Check if index is consider in the observation if idx < self.ticks_per_observation - 1: raise NotEnoughDataError # Return None if the time is not continuous idx_start = idx - self.ticks_per_observation + 1 # Create result nd.array for storing data from memcache # With client_len, number of tick per observation, data per client result = np.zeros( (len(self.db.client_list), self.ticks_per_observation, len(self.conf['ceph-param'])), dtype=float) missing_entry = 0 # Loop each index until reach idx for i in range(idx_start, idx + 1): # Loop each client for client_id_idx in range(len(self.db.client_list)): # Check for missing entry if self.db.memcache[i][2][client_id_idx] is None: missing_entry += 1 # Add missing entry # Check for tolerance if missing_entry > self.db.missing_entry_tolerance: raise NotEnoughDataError('Too many missing entries') else: # Add PIs data at i to result list result[client_id_idx, i - idx_start] = self.db.memcache[i][2][client_id_idx] # return result vector return result.reshape((self.observation_size, )) def get_next_observation_by_cache_idx(self, idx: int) -> np.ndarray: """Get next observation from idx Args: idx (int): observation index Raises: NotEnoughDataError: index is last tick in memcache NotEnoughDataError: next tick is not equal to ts at idx + tick_len Returns: np.ndarray: next observation """ # Check if idx is out of range assert 0 <= idx < len(self.db.memcache) # if index is the last tick if idx == len(self.db.memcache) - 1: raise NotEnoughDataError # # Check if next tick is continuous # if self.db.memcache[idx][0] + self.opt['tick_len'] != self.db.memcache[idx + 1][0]: # logger.info('or sth here') # raise NotEnoughDataError # Check observation at next tick return self.get_observation_by_cache_idx(idx + 1) def _calc_total_throughput(self, observ: np.ndarray) -> float: """ Calculate total throughput of an observation Only the throughput of last tick in the observation are included in the reward. Args: observ (np.ndarray): observation Returns: float: total throughput """ # Get number of client if 'client_id' in self.conf['node']: client_num = len(self.conf['node']['client_id']) else: client_num = 1 # reshape also checks the shape of observ observ = np.reshape(observ, (client_num, self.ticks_per_observation, len(self.conf['ceph-param']))) result = 0.0 # throughput result # Loop through each client for client_idx in range(client_num): # Loop through each server (Should start from 0) for osc in range(len(self.conf['node']['server_addr'])): # Get read_bytes, write_bytes indicies read_ix = osc * (self.opt['pi_per_client_obd']) + 0 write_ix = osc * (self.opt['pi_per_client_obd']) + 1 # Get read_bytes, writes_bytes from observation read_bytes = observ[client_idx, self.ticks_per_observation - 1, read_ix] write_bytes = observ[client_idx, self.ticks_per_observation - 1, write_ix] # sanity check: our machine can't be faster than 300 MB/s assert 0 <= read_bytes <= 300 * 1024 * 1024 assert 0 <= write_bytes <= 300 * 1024 * 1024 result += read_bytes + write_bytes return result def _calc_total_latency(self, observ: np.ndarray) -> float: """ Calculate latency of an observation Only the lantency of last tick in the observation are included in the reward. Args: observ (np.ndarray): observation Returns: float: total throughput """ # Get number of client if 'client_id' in self.conf['node']: client_num = len(self.conf['node']['client_id']) else: client_num = 1 # reshape also checks the shape of observ observ = np.reshape(observ, (client_num, self.ticks_per_observation, len(self.conf['ceph-param']))) result = 0.0 # throughput result # Loop through each client for client_idx in range(client_num): # Loop through each server for osc in range(len(self.conf['node']['server_addr'])): # Get latency read and write indicies latency_r_ix = osc * (self.opt['pi_per_client_obd']) + 2 latency_w_ix = osc * (self.opt['pi_per_client_obd']) + 3 # Get latency read and write from observation latency_r = observ[client_idx, self.ticks_per_observation - 1, latency_r_ix] latency_w = observ[client_idx, self.ticks_per_observation - 1, latency_w_ix] result += latency_r + latency_w return result def perform_action(self, actions, ts): """Send the new action to IntfDaemon Args: action: An action predicted by discrete_deepq """ # logger.info(f'{action}') # assert action.shape == tuple([1,4]) # assert 0 <= action_id < self.opt['num_actions'] action_opt = { 0: self._increase_p_s, 1: self._increase_p_decrease_s, 2: self._increase_p_dna, 3: self._decrease_p_increase_s, 4: self._decrease_p_s, 5: self._decrease_p_dna } for action_id in actions: if action_id > 0: param_id = (action_id - 1) // 6 logger.info(f"This is {param_id}") logger.info(f"This is {self.conf['ceph-param'][param_id]}") param_valu = list( self.conf['ceph-param'][param_id].values())[0] param_type = param_valu['type'] min_val = param_valu['min'] max_val = param_valu['max'] step_change = self.opt['stepsize_change'] if (param_type == "str"): # TODO: Handle string type parameter continue else: action_opt[action_id % 6](param_id, min_val, max_val, step_change) self.db.connect_db() for t in (ts - self.delay_between_actions, ts): try: logger.info(f'insert action at: {t}') self.db.insert_action(t, self.last_action) except sqlite3.IntegrityError as e: pass self.db.conn.close() # # Broadcast action must begin with action_id, which will be saved by # # IntfDaemon to the DB. ControllerInft.broadcastAction(self.last_action, ts, self.conf, self.opt) def _increase_p_s(self, param_id, min_val, max_val, step_change): next_step_size = self.last_step[param_id] + step_change if self.last_action[param_id] + next_step_size > max_val: # invalid move pass else: # Do increase step size and parameter value self.last_step[param_id] += step_change self.last_action[param_id] += self.last_step[param_id] def _increase_p_decrease_s(self, param_id, min_val, max_val, step_change): next_step_size = self.last_step[param_id] - step_change if self.last_action[param_id] + next_step_size > max_val: # invalid move pass else: # Do increase step size and decrease parameter value self.last_step[param_id] -= step_change self.last_action[param_id] += self.last_step[param_id] def _increase_p_dna(self, param_id, min_val, max_val, step_change): if self.last_action[param_id] + self.last_step[param_id] > max_val: # invalid move pass else: # Do increase parameter value self.last_action[param_id] += self.last_step[param_id] def _decrease_p_increase_s(self, param_id, min_val, max_val, step_change): next_step_size = self.last_step[param_id] + step_change if self.last_action[param_id] - next_step_size < min_val: # invalid move pass else: # Do decrease step size and increase parameter value self.last_step[param_id] += step_change self.last_action[param_id] -= self.last_step[param_id] def _decrease_p_s(self, param_id, min_val, max_val, step_change): next_step_size = self.last_step[param_id] - step_change if self.last_action[param_id] - next_step_size < min_val: # invalid move pass else: # Do decrease step size and parameter value self.last_step[param_id] -= step_change self.last_action[param_id] -= self.last_step[param_id] def _decrease_p_dna(self, param_id, min_val, max_val, step_change): if self.last_action[param_id] - self.last_step[param_id] < min_val: # invalid move pass else: # Do decrease parameter value self.last_action[param_id] -= self.last_step[param_id]
def start(self): """Start MLDaemon This function create tensorflow controller and running the tuning by iteratively training and choose action. """ if self.debugging_level >= 1: import cProfile import io import pstats pr = cProfile.Profile() pr.enable() logger.info(f"Connected to database {self.conf['replaydb']['dbfile']}") # set stopped to False, so daemon can run self.stopped = False logger.info('Starting MLDaemon...') try: # TensorFlow business - it is always good to reset a graph before creating a new controller. ops.reset_default_graph() # ? shall we use InteractiveSession()? self.session = tf.Session() # tf.InteractiveSession() # This little guy will let us run tensorboard # tensorboard --logdir [LOG_DIR] journalist = tf.summary.FileWriter(self.LOG_DIR) # Brain maps from observation to Q values for different actions. # Here it is a done using a multi layer perceptron with 2 hidden # layers hidden_layer_size = max(int(self.observation_size * 1.2), 200) logger.info('Observation size {0}, hidden layer size {1}'.format( self.observation_size, hidden_layer_size)) brain = MLP([ self.observation_size, ], [hidden_layer_size, hidden_layer_size, self.opt['num_actions']], [tf.tanh, tf.tanh, tf.identity]) # The optimizer to use. Here we use RMSProp as recommended # by the publication optimizer = tf.train.RMSPropOptimizer(learning_rate=0.001, decay=0.9) # DiscreteDeepQ object self.controller = DiscreteDeepQ( (self.observation_size, ), self.opt['num_actions'], brain, optimizer, self.session, discount_rate=0.99, start_random_rate=self.start_random_rate, exploration_period=self.exploration_period, random_action_probability=self. opt['random_action_probability'], train_every_nth=1, summary_writer=journalist, k_action=int(self.opt['k_val'])) self.session.run(tf.initialize_all_variables()) self.session.run(self.controller.target_network_update) #checks if there is a model to be loaded before updating the graph if os.path.isfile(os.path.join(self.save_path, 'model')): self.controller.restore(self.save_path) logger.info('Loaded saved model from ' + self.save_path) else: logger.info('No saved model found') self.test_number_of_steps_after_restore = self.controller.actions_executed_so_far # graph was not available when journalist was created journalist.add_graph(self.session.graph) last_action_second = 0 # last action timestep last_training_step_duration = 0 # last training duration last_checkpoint_time = time.time() # last checkpoint while not self.stop_requested: begin_time = time.time() # set begin time to current time # Run training step logger.info('Start training step...') minibatch_size, prediction_error = self._do_training_step() if minibatch_size > 0: # Check checkpoint time for every self.checkpoint_time logger.info( f'Time before checkpoint: {self.checkpoint_time - (time.time() - last_checkpoint_time)}' ) if time.time( ) - last_checkpoint_time > self.checkpoint_time: # save controller checkpoint cp_path = os.path.join( self.save_path, 'checkpoint_' + time.strftime('%Y-%m-%d_%H-%M-%S')) os.mkdir(cp_path) self.controller.save(cp_path) # update checkpoint time last_checkpoint_time = time.time() logger.info('Checkpoint saved in ' + cp_path) # update last training duration last_training_step_duration = time.time() - begin_time logger.info( 'Finished {step}th training step in {time} seconds ' 'using {mb} samples with prediction error {error}.'. format(step=self.controller.iteration, time=last_training_step_duration, mb=minibatch_size, error=prediction_error)) else: logger.info('Not enough data for training yet.') # Check if it is time for tuning # (check if duration since last action passed compare to time left before next actions) if time.time() - ( last_action_second + 0.5 ) >= self.delay_between_actions - last_training_step_duration: if self.enable_tuning: logger.debug('Start tuning step...') try: # Update memcache for next traininf interval self.db.refresh_memcache() except: pass # get sleep time either 0 or what is left until next action is start sleep_time = max( 0, self.delay_between_actions - (time.time() - (last_action_second + 0.5))) if sleep_time > 0.05: # Do garbage cleaning up before long sleeping gc.collect() sleep_time = max( 0, self.delay_between_actions - (time.time() - (last_action_second + 0.5))) if sleep_time > 0.0001: logger.debug(f'Sleeping {sleep_time} seconds') # Welp, basically sleep time.sleep(sleep_time) # Do action step ts = int(time.time()) self._do_action_step(ts) # Update action to current time last_action_second = ts else: logger.debug('Tuning disabled.') # Check for new data every 200 steps to reduce checking overhead if self.controller.number_of_times_train_called % 200 == 0: try: self.db.refresh_memcache() pass except: pass # We always print out the reward to the log for analysis logger.info(f'Cumulative reward: {self.cumulative_reward}') # Clean log at the end for next run flush_log() finally: # set stopped to True, so daemon can properly stop self.stopped = True # controller.save should not work here as the controller is still NoneType # self.controller.save(self.save_path) logger.info('MLDaemon stopped.') if self.debugging_level >= 1: pr.disable() s = io.StringIO() sortby = 'cumulative' ps = pstats.Stats(pr, stream=s).sort_stats(sortby) ps.print_stats() print(s.getvalue())
# layers brain = MLP([ n_prev_frames * 4 + n_prev_frames - 1, ], [4], [tf.identity]) # The optimizer to use. Here we use RMSProp as recommended # by the publication optimizer = tf.train.RMSPropOptimizer(learning_rate=0.001, decay=0.9) # DiscreteDeepQ object current_controller = DiscreteDeepQ(n_prev_frames * 4 + n_prev_frames - 1, 4, brain, optimizer, session, discount_rate=0.9, exploration_period=100, max_experience=10000, store_every_nth=1, train_every_nth=4, target_network_update_rate=0.1, summary_writer=journalist) session.run(tf.initialize_all_variables()) session.run(current_controller.target_network_update) # graph was not available when journalist was created journalist.add_graph(session.graph_def) # In[330]: performances = []