def _setup_net(placeholder, layers, weights, mean_pixel): """ Returns the cnn built with given weights and normalized with mean_pixel """ net = {} placeholder -= mean_pixel for i, name in enumerate(layers): kind = name[:4] with tf.variable_scope(name): if kind == 'conv': kernels, bias = weights[i][0][0][0][0] # matconvnet: [width, height, in_channels, out_channels] # tensorflow: [height, width, in_channels, out_channels] kernels = tf_utils.get_variable( np.transpose(kernels, (1, 0, 2, 3)), name=name + "_w") bias = tf_utils.get_variable( bias.reshape(-1), name=name + "_b") placeholder = tf_utils.conv2d(placeholder, kernels, bias) elif kind == 'relu': placeholder = tf.nn.relu(placeholder, name=name) tf_utils.add_activation_summary(placeholder, collections=['train']) elif kind == 'pool': placeholder = tf_utils.max_pool_2x2(placeholder) net[name] = placeholder return net
def inference(image, keep_prob): print("setting up vgg initialized conv layers ...") model_data = utils.get_model_data(FLAGS.model_path) mean = model_data['normalization'][0][0][0] mean_pixel = np.mean(mean, axis=(0, 1)) weights = np.squeeze(model_data['layers']) processed_image = utils.process_image(image, mean_pixel) with tf.variable_scope("inference"): image_net = vgg_net(weights, processed_image) conv_final_layer = image_net["conv5_3"] pool5 = utils.max_pool_2x2(conv_final_layer, "pool5") W6 = utils.weight_variable([7, 7, 512, 4096], name="W6") b6 = utils.bias_variable([4096], name="b6") conv6 = utils.conv2d_basic(pool5, W6, b6, name="conv6") relu6 = tf.nn.relu(conv6, name="relu6") if FLAGS.debug: utils.add_activation_summary(relu6) relu_dropout6 = tf.nn.dropout(relu6, keep_prob=keep_prob) W7 = utils.weight_variable([1, 1, 4096, 4096], name="W7") b7 = utils.weight_variable([4096], name="b7") conv7 = utils.conv2d_basic(relu_dropout6, W7, b7, name="conv7") relu7 = tf.nn.relu(conv7, name="relu7") if FLAGS.debug: utils.add_activation_summary(relu7) relu_dropout7 = tf.nn.dropout(relu7, keep_prob=keep_prob) W8 = utils.weight_variable([1, 1, 4096, NUM_OF_CLASSES], name="W8") b8 = utils.bias_variable([NUM_OF_CLASSES], name="b8") conv8 = utils.conv2d_basic(relu_dropout7, W8, b8, name="conv8") # now to upscale to actual image size deconv_shape1 = image_net["pool4"].get_shape() W_t1 = utils.weight_variable([4, 4, deconv_shape1[3].value, NUM_OF_CLASSES], name="W_t1") b_t1 = utils.bias_variable([deconv_shape1[3].value], name="b_t1") conv_t1 = utils.conv2d_transpose_strided(conv8, W_t1, b_t1, "conv_t1", output_shape=tf.shape(image_net("pool4"))) fuse_1 = tf.add(conv_t1, image_net["pool4"], name="fuse_1") deconv_shape2 = image_net["pool3"].get_shape() W_t2 = utils.weight_variable([4, 4, deconv_shape2[3].value, deconv_shape1[3].value], name="W_t2") b_t2 = utils.bias_variable([deconv_shape2[3].value], name="b_t2") conv_t2 = utils.conv2d_transpose_strided(fuse_1, W_t2, b_t2, "conv_t2", output_shape=tf.shape(image_net("pool3"))) fuse_2 = tf.add(conv_t2, image_net["pool3"], name="fuse_2") shape = tf.shape(image) deconv_shape3 = tf.stack([shape[0], shape[1], shape[2], NUM_OF_CLASSES]) W_t3 = utils.weight_variable([16, 16, NUM_OF_CLASSES, deconv_shape2[3].value], name="W_t3") b_t3 = utils.bias_variable([NUM_OF_CLASSES], name="b_t3") conv_t3 = utils.conv2d_transpose_strided(fuse_2, W_t3, b_t3, "conv_t3", output_shape=deconv_shape3, stride=8) annotation_pred = tf.argmax(conv_t3, axis=2, name="prediction") return tf.expand_dims(annotation_pred, axi=3), conv_t3
def vgg_net(weights, image): layers = ( 'conv1_1', 'relu1_1', 'conv1_2', 'relu1_2', 'pool1', 'conv2_1', 'relu2_1', 'conv2_2', 'relu2_2', 'pool2', 'conv3_1', 'relu3_1', 'conv3_2', 'relu3_2', 'conv3_3', 'relu3_3', 'conv3_4', 'relu3_4', 'pool3', 'conv4_1', 'relu4_1', 'conv4_2', 'relu4_2', 'conv4_3', 'relu4_3', 'conv4_4', 'relu4_4', 'pool4', 'conv5_1', 'relu5_1', 'conv5_2', 'relu5_2', 'conv5_3', 'relu5_3', 'conv5_4', 'relu5_4' ) net = {} current = image for i, name in enumerate(layers): kind = name[:4] if kind == 'conv': kernels, bias = weights[i][0][0][0][0] # matconvet: weights are [width, height, inchannel, outchannel] # tensorflow: weights are [height, width, inchannel, outchannel] kernels = utils.get_variable(np.transpose(kernels, (1, 0, 2, 3)), name=name + "_w") bias = utils.get_variable(bias.reshape(-1), name=name + "_b") current = utils.conv2d_basic(current, kernels, bias, name) elif kind == 'relu': current = tf.nn.relu(current, name=name) if FLAGS.debug: utils.add_activation_summary(current) elif kind == 'pool': current = utils.avg_pool2x2(current, name) net[name] = current return net
tf.summary.scalar('pos_loss', pos_loss) tf.summary.scalar('neg_loss', neg_loss) tf.summary.scalar('box_loss', box_loss) tf.summary.scalar('reg_loss', reg_loss) tf.summary.scalar('total_loss', total_loss) # tf.summary.scalar('learning_rate', decay_learning_rate) with tf.name_scope('summary_vars'): for weight in weight_vars: add_var_summary(weight) for bias in bias_vars: add_var_summary(bias) with tf.name_scope('summary_activations'): for activations in endpoints.keys(): add_activation_summary(endpoints[activations]) merge_summary = tf.summary.merge_all() train_writer = tf.summary.FileWriter(FLAGS.summaries_dir, sess.graph) saver = tf.train.Saver(max_to_keep=3) sess.run(tf.global_variables_initializer()) # initialize ckpt = None if FLAGS.last_ckpt is not None: ckpt = tf.train.latest_checkpoint(FLAGS.last_ckpt) if ckpt is not None: # set up save configuration saver.restore(sess, ckpt) print('Recovering From {}'.format(ckpt))
def create_fcn(placeholder, keep_prob, classes): """ Setup the main conv/deconv network """ with tf.variable_scope('inference'): vgg_net = create_vgg19(placeholder) conv_final = vgg_net['relu5_4'] output = tf_utils.max_pool_2x2(conv_final) conv_shapes = [[7, 7, 512, 4096], [1, 1, 4096, 4096], [1, 1, 4096, classes]] for i, conv_shape in enumerate(conv_shapes): name = 'conv%d' % (i + 6) with tf.variable_scope(name): W = tf_utils.weight_variable(conv_shape, name=name + '_w') b = tf_utils.bias_variable(conv_shape[-1:], name=name + '_b') output = tf_utils.conv2d(output, W, b) with tf.variable_scope('relu%d' % (i + 6)): if i < 2: output = tf.nn.relu(output) tf_utils.add_activation_summary(output, collections=['train']) output = tf.nn.dropout(output, keep_prob=keep_prob) pool4 = vgg_net['pool4'] pool3 = vgg_net['pool3'] deconv_shapes = [ tf.shape(pool4), tf.shape(pool3), tf.stack([ tf.shape(placeholder)[0], tf.shape(placeholder)[1], tf.shape(placeholder)[2], classes ]) ] W_shapes = [[4, 4, pool4.get_shape()[3].value, classes], [ 4, 4, pool3.get_shape()[3].value, pool4.get_shape()[3].value ], [16, 16, classes, pool3.get_shape()[3].value]] strides = [2, 2, 8] for i in range(3): name = 'deconv%d' % (i + 1) with tf.variable_scope(name): W = tf_utils.weight_variable(W_shapes[i], name=name + '_w') output = tf_utils.conv2d_transpose( output, W, None, output_shape=deconv_shapes[i], stride=strides[i]) with tf.variable_scope('skip%d' % (i + 1)): if i < 2: output = tf.add(output, vgg_net['pool%d' % (4 - i)]) prediction = tf.argmax(output, dimension=3, name='prediction') return tf.expand_dims(prediction, dim=3), output