Exemple #1
0
def test_lamarckian():
    p = Problem(data.data, data.target, lamarckian=True)
    ch = Chromosome(p.nin, p.nout)
    ch.random(c)
    fitness = p.get_fitness(ch)
    print("fitness: ", fitness)
    assert True
Exemple #2
0
def test_tensor():
    ch = Chromosome(5, 2)
    ch.random(c)
    ch.outputs[0] = 9
    ch.outputs[1] = 9
    out = ch.get_tensors()
    print(out)
    assert True
Exemple #3
0
class Evolver:
    def __init__(self, problem, config, logname='test', root_dir='.'):
        self.config = config
        self.problem = problem
        self.max_fit = 0.0
        self.best = Chromosome(self.problem.nin, self.problem.nout)
        self.best.random(config)
        self.logfile = os.path.join(root_dir, 'logs', logname + '.log')
        self.logname = logname
        self.generation = 0

    def run(self, n_steps):
        for i in range(n_steps):
            self.step()

    def mutate(self, chromosome):
        child_genes = np.copy(chromosome.genes)
        change = np.random.rand(
            len(child_genes)) < self.config.cfg["mutation_rate"]
        child_genes[change] = np.random.rand(np.sum(change))
        child = Chromosome(self.problem.nin, self.problem.nout)
        child.from_genes(child_genes, self.config)
        return child

    def step(self):
        next_best = self.best
        next_max_fit = self.max_fit
        for i in range(self.config.cfg["lambda"]):
            child = self.mutate(self.best)
            fitness = 0.0
            history = []
            try:
                fitness, history = self.problem.get_fitness(child)
            except Exception as e:
                print(e)
            if fitness >= next_max_fit:
                if fitness > next_max_fit:
                    with open(self.logfile, 'a') as f:
                        for i in range(len(history)):
                            # type,logname,gen,eval,epoch,total_epochs,loss,acc,best
                            f.write('L,%s,%d,%d,%d,%d,%0.10f,%0.10f,%0.10f\n' %
                                    (self.logname, self.generation,
                                     self.problem.eval_count, i,
                                     self.problem.epochs, history[i][0],
                                     history[i][1], fitness))
                        f.write('E,%s,%d,%d,%d,%d,%0.10f,%0.10f,%0.10f\n' %
                                (self.logname, self.generation,
                                 self.problem.eval_count, 0,
                                 self.problem.epochs, 0.0, 0.0, fitness))
                next_best = child
                next_max_fit = fitness
            else:
                del child
        self.best = next_best
        self.max_fit = next_max_fit
        self.generation += 1
Exemple #4
0
def test_run():
    ch = Chromosome(2, 1)
    ch.random(c)
    ch.outputs[0] = 2
    ch.nodes[2].x = 0
    ch.nodes[2].y = 1
    ch.nodes[2].function = tf.square
    ch.nodes[2].arity = 1
    outv = ch.run()
    print(outv)
    assert outv == ch.nodes[2].param
Exemple #5
0
Fichier : ga.py Projet : d9w/TFCGP
 def __init__(self, problem, config, logname='test', root_dir='.'):
     self.config = config
     self.problem = problem
     self.max_fit = 0.0
     self.population = []
     for i in range(self.config.cfg["ga_population"]):
         ch = Chromosome(self.problem.nin, self.problem.nout)
         ch.random(config)
         self.population += [ch]
     self.fits = -np.inf * np.ones(self.config.cfg["ga_population"])
     self.logfile = os.path.join(root_dir, 'logs', logname + '.log')
     self.logname = logname
     self.generation = 0
Exemple #6
0
def test_active():
    ch = Chromosome(5, 2)
    ch.random(c)
    ch.nodes[5].x = 0
    ch.nodes[5].y = 1
    ch.nodes[5].arity = 2
    ch.nodes[6].x = 3
    ch.nodes[7].x = 5
    ch.nodes[7].y = 6
    ch.nodes[7].arity = 1
    ch.outputs[0] = 7
    ch.outputs[1] = 7
    ch.set_active()
    print(ch.get_active())
    assert ch.get_active() == [0, 1, 5, 7]
Exemple #7
0
def test_creation():
    ch = Chromosome(5, 2)
    ch.random(c)
    assert len(ch.nodes) == c.cfg["num_nodes"] + 5
    assert len(ch.outputs) == 2
Exemple #8
0
def test_multiout_run():
    ch = Chromosome(10, 10)
    ch.random(c)
    outv = ch.run()
    print(outv)
    assert len(outv) > 1
Exemple #9
0
def test_visul():
    ch = Chromosome(8, 8)
    ch.random(c)
    ch.visualize("test")
    assert True
Exemple #10
0
from tfcgp.config import Config
from tfcgp.chromosome import Chromosome
from tfcgp.classifier import Classifier
from tfcgp.problem import Problem
import numpy as np
import tensorflow as tf
from sklearn import datasets

c = Config()
c.update("cfg/test.yaml")

data = datasets.load_iris()

p = Problem(data.data, data.target)
ch = Chromosome(p.nin, p.nout)
ch.random(c)
orig_genes = np.copy(ch.genes)
clf = Classifier(ch,
                 p.x_train,
                 p.x_test,
                 p.y_train,
                 p.y_test,
                 batch_size=p.batch_size,
                 epochs=p.epochs,
                 seed=p.seed,
                 lamarckian=p.lamarckian)
fit = 0.0


def test_eval():
    acc = clf.evaluate()
Exemple #11
0
class LearnEvolver:
    def __init__(self, problem, config, logname='test', root_dir='.'):
        self.config = config
        self.problem = problem
        self.epochs = 1 * self.problem.epochs
        self.max_learn_fit = 0.0
        self.max_evo_fit = 0.0
        self.max_fit = 0.0
        self.evo_best = Chromosome(self.problem.nin, self.problem.nout)
        self.evo_best.random(config)
        self.learn_best = Chromosome(self.problem.nin, self.problem.nout)
        self.learn_best.from_genes(self.evo_best.genes, config)
        self.logfile = os.path.join(root_dir, 'logs', logname + '.log')
        self.logname = logname
        self.generation = 0

    def run(self, n_steps):
        for i in range(n_steps):
            self.step()

    def mutate(self, chromosome):
        child_genes = np.copy(chromosome.genes)
        change = np.random.rand(
            len(child_genes)) < self.config.cfg["mutation_rate"]
        child_genes[change] = np.random.rand(np.sum(change))
        child = Chromosome(self.problem.nin, self.problem.nout)
        child.from_genes(child_genes, self.config)
        return child

    def step(self):
        evo_delete = True
        learn_delete = True
        evo_child = self.mutate(self.evo_best)
        self.problem.epochs = 0
        fitness, history = self.problem.get_fitness(evo_child)
        if fitness >= self.max_evo_fit:
            self.evo_best = evo_child
            self.max_evo_fit = fitness
            evo_delete = False
        if fitness >= self.max_learn_fit:
            self.learn_best = evo_child
            self.max_learn_fit = fitness
            evo_delete = False
        learn_child = self.mutate(self.learn_best)
        self.problem.epochs = self.epochs
        fitness, history = self.problem.get_fitness(learn_child)
        if fitness >= self.max_learn_fit:
            self.learn_best = learn_child
            self.max_learn_fit = fitness
            learn_delete = False
        new_max = max(self.max_evo_fit, self.max_learn_fit)
        if new_max > self.max_fit:
            self.max_fit = new_max
            with open(self.logfile, 'a') as f:
                for i in range(len(history)):
                    # type,logname,gen,eval,epoch,total_epochs,loss,acc,best
                    f.write('L,%s,%d,%d,%d,%d,%0.10f,%0.10f,%0.10f\n' %
                            (self.logname, self.generation,
                             self.problem.eval_count, i, self.problem.epochs,
                             history[i][0], history[i][1], new_max))
                f.write(
                    'E,%s,%d,%d,%d,%d,%0.10f,%0.10f,%0.10f\n' %
                    (self.logname, self.generation, self.problem.eval_count, 0,
                     self.problem.epochs, 0.0, 0.0, new_max))
        if evo_delete:
            del evo_child
        if learn_delete:
            del learn_child
        self.generation += 1