def test_mul_inverse(self): ga = GeometricAlgebra(metric=dual_metric) # a = 2 a = ga.from_tensor_with_kind(tf.fill([1], 2.0), kind="scalar") # b = 3 + 3e0 b = ga.from_tensor_with_kind(tf.fill([2], 3.0), kind="mv") # a * b = 2 * (3 + 3e0) = 6 + 6e0 c = ga.geom_prod(a, b) self.assertTensorsEqual(c, ga.from_scalar(6.0) + 6.0 * ga.e("0")) # a^-1 = 1 / 2 a_inv = ga.inverse(a) self.assertTensorsEqual(ga.select_blades_with_name(a_inv, ""), 0.5) # c = a * b # => a_inv * c = b self.assertTensorsEqual(ga.geom_prod(a_inv, c), b) # Since a is scalar, should commute too. # => c * a_inv = b self.assertTensorsEqual(ga.geom_prod(c, a_inv), b) # b is not simply invertible (because it does not square to a scalar) # and will throw an exception self.assertRaises(Exception, ga.simple_inverse, b) # b is invertible with the shirokov inverse b_inv = ga.inverse(b) self.assertTensorsEqual(ga.geom_prod(b, b_inv), 1 * ga.e(""))
def test_inverse(self): pga = GeometricAlgebra(pga_signature) # a = 3e12 + 5e23 a = 3 * pga.e12 + 5 * pga.e23 # a_inv: -0.09*e_12 + -0.15*e_23 a_inv = pga.inverse(a) # a a_inv should be 1 self.assertTensorsApproxEqual(pga.geom_prod(a, a_inv), 1 * pga.e(""))