Exemple #1
0
    def test_parser_and(self):

        World.reset()
        World._evaluation_mode = tfl.LOGIC_MODE

        def inside(x, y):
            centers_distance = tf.sqrt(
                tf.reduce_sum(tf.squared_difference(x[:, 0:2], y[:, 0:2]),
                              axis=1) + 1e-6)
            return tf.cast((centers_distance + x[:, 2]) < y[:, 2], tf.float32)

        tfl.setTNorm(id=tfl.SS, p=1)
        circles = tfl.Domain(label="Circles",
                             data=[[0., 0, 1], [0, 0, 2], [0, 0, 3]])
        inside = tfl.Predicate(label="inside",
                               domains=["Circles", "Circles"],
                               function=inside)

        x = tfl.variable(circles, "x")
        y = tfl.variable(circles, "y")
        a = tfl.atom(inside, (x, y))
        b = tfl.atom(inside, (y, x))
        f = tfl.and_n(a, b)

        tensor = tfl.constraint("inside(x,y) and inside(y,x)")

        sess = tf.Session()

        assert np.equal(sess.run(tensor), sess.run(f)).all()
Exemple #2
0
    def test_transposition(self):
        """This test is for evaluating caching when the same variable is used as two different arguments of the same predicate"""

        World.reset()

        def inside(x, y):
            centers_distance = tf.sqrt(
                tf.reduce_sum(tf.squared_difference(x[:, 0:2], y[:, 0:2]),
                              axis=1) + 1e-6)
            return tf.cast((centers_distance + x[:, 2]) < y[:, 2], tf.float32)

        circles = tfl.Domain(label="Circles",
                             data=[[0., 0, 1], [0, 0, 2], [0, 0, 3]])
        inside = tfl.Predicate(label="inside",
                               domains=["Circles", "Circles"],
                               function=inside)
        tfl.setTNorm(id=tfl.SS, p=1)
        sess = tf.Session()

        # Constraint 1
        x = tfl.variable(circles, name="x")
        y = tfl.variable(circles, name="y")
        a = tfl.atom(inside, (x, y))
        b = tfl.atom(inside, (y, x))
        rule = tfl.and_n(a, b)

        assert np.greater(sess.run(rule), np.zeros(shape=[3, 3, 3])).all()
        assert len(World._predicates_cache) == 1
Exemple #3
0
    def test_cache(self):

        World.reset()

        a = tf.zeros([10, 10])

        print(a)
        """Checking caching mechanism works"""

        # Program Model
        nn1 = lambda x: tf.constant([0., 1, 0])
        nn2 = lambda x: tf.constant([0., 0, 0])
        images = tfl.Domain(label="Images", data=[[0., 0], [1, 1], [0.2, 0.3]])
        zero = tfl.Predicate(label="zero", domains=["Images"], function=nn1)
        one = tfl.Predicate(label="one", domains=["Images"], function=nn2)
        close = tfl.Predicate(
            label="close",
            domains=["Images", "Images"],
            function=lambda x, y: tf.reduce_sum(tf.abs(x - y), axis=1))
        tfl.setTNorm(id=tfl.PRODUCT, p=None)

        # Constraint 1
        "zero(x) and one(y)"
        x = tfl.variable(images)
        y = tfl.variable(images)
        a = tfl.atom(zero, (x, ))
        b = tfl.atom(one, (y, ))
        andd = tfl.and_n(a, b)

        # Constraint 2
        z = tfl.variable(images)
        h = tfl.variable(images)
        c = tfl.atom(zero, (z, ))
        d = tfl.atom(one, (h, ))
        papapa = tfl.and_n(c, d)
        ab = tfl.atom(close, (x, y))

        assert len(World._predicates_cache
                   ) == 3  # one of zero, one for one and one for close