Exemple #1
0
 def parse_options(self):
     options = self._flatbuf_op.BuiltinOptions()
     o = ResizeBilinearOptions()
     o.Init(options.Bytes, options.Pos)
     self.align_corners = o.AlignCorners()
     self._flatbuf_options_obj = options
     self._supported_options = ['align_corners']
Exemple #2
0
    def _convert_resize(self, method, op):
        """Generic method to Convert TFLite RESIZE operators"""
        try:
            from tflite.BuiltinOptions import BuiltinOptions
            from tflite.Operator import Operator
            from tflite.ResizeBilinearOptions import ResizeBilinearOptions
            # ResizeNearestNeighborOptions was added in tflite v1.13
            tflite_ver = 1120
            if 'ResizeNearestNeighborOptions' in dir(BuiltinOptions):
                from tflite.ResizeNearestNeighborOptions import ResizeNearestNeighborOptions
                tflite_ver = 1130
        except ImportError:
            raise ImportError("The tflite package must be installed")

        assert isinstance(op, Operator)
        input_tensors = self.get_input_tensors(op)
        assert len(input_tensors) == 2, "input tensors length should be 2"

        # images, 4-D Tensor with shape NHWC.
        input_tensor = input_tensors[0]
        in_expr = self.get_expr(input_tensor.tensor_idx)

        # size - 1-D int32 Tensor of 2 elements: new_height, new_width
        target_size = tuple(self.get_tensor_value(input_tensors[1]))

        # Options - align_corners (bool)
        resize_options = None
        align_corners = False
        if method == "BILINEAR":
            assert op.BuiltinOptionsType(
            ) == BuiltinOptions.ResizeBilinearOptions
            resize_options = ResizeBilinearOptions()
        elif tflite_ver >= 1130:
            assert op.BuiltinOptionsType(
            ) == BuiltinOptions.ResizeNearestNeighborOptions
            resize_options = ResizeNearestNeighborOptions()

        if resize_options is not None:
            op_options = op.BuiltinOptions()
            resize_options.Init(op_options.Bytes, op_options.Pos)
            align_corners = resize_options.AlignCorners()

        # Use layout NHWC
        out = _op.image.resize(in_expr, target_size, "NHWC", method,
                               align_corners)
        return out
Exemple #3
0
class ResizeBilinear(Layer):
    def __init__(self, op, op_type, tflite_interpreter):
        Layer.__init__(self, op, op_type, tflite_interpreter)

        self.tflite_resize_bilinear_parser = ResizeBilinearOptions()
        self.tflite_resize_bilinear_parser.Init(self.op.BuiltinOptions().Bytes,
                                                self.op.BuiltinOptions().Pos)

    def generate(self):
        node_output_detail = self.tflite_interpreter._get_tensor_details(
            self.op.Outputs(0))
        node_input_detail = self.tflite_interpreter._get_tensor_details(
            self.op.Inputs(0))

        # create scale constant node
        tensor_input_detail = self.tflite_interpreter._get_tensor_details(
            self.op.Inputs(1))

        source_width, source_height = node_input_detail['shape'].tolist()[1:3]
        target_width, targwt_height = self.tflite_interpreter.get_tensor(
            tensor_input_detail['index']).tolist()

        source_size = np.array([1.0, 1.0, source_height, source_width],
                               dtype=np.float)
        target_siz = np.array([1.0, 1.0, targwt_height, target_width],
                              dtype=np.float)

        scale_val = target_siz / source_size
        scale_constant_node = tflite_utils.create_constant_node(
            self.node_name + '_scales', scale_val.shape, scale_val)

        constant_info = onnx.helper.make_tensor_value_info(
            name=scale_constant_node.name,
            elem_type=TensorProto.FLOAT,
            shape=scale_val.shape)

        self.node_list.append(scale_constant_node)
        self.value_infos.append(constant_info)

        # create roi constant node
        roi_constant_node = tflite_utils.create_constant_node(
            self.node_name + 'resize_roi', [], np.array([-1],
                                                        dtype=np.float32))
        self.node_list.append(roi_constant_node)

        previous_onnx_node_names = self.input_nodes_name.copy()
        previous_onnx_node_names.extend(
            [roi_constant_node.name, scale_constant_node.name])
        resize_nearest_neighbor_node = onnx.helper.make_node(
            op_type='Resize',
            inputs=previous_onnx_node_names,
            outputs=[self.node_name],
            name=self.node_name,
            mode='linear',
            coordinate_transformation_mode='align_corners'
            if self.tflite_resize_bilinear_parser.AlignCorners() == True else
            'half_pixel')

        resize_nearest_neighbor_info = onnx.helper.make_tensor_value_info(
            name=self.node_name,
            elem_type=TensorProto.FLOAT,
            shape=tflite_utils.tflite2onnx_shape_map(
                node_output_detail['shape'].tolist()))

        # update tables
        self.node_list.append(resize_nearest_neighbor_node)
        self.value_infos.append(resize_nearest_neighbor_info)

        return self.node_list, self.value_infos, self.weight_node_list