Exemple #1
0
def main(args):

    if (not args.annotation_file_name):
        raise ValueError(
            'You must supply input face dataset annotations file with --annotation_file_name.'
        )

    if (not args.annotation_image_dir):
        raise ValueError(
            'You must supply input face dataset training image directory with --annotation_image_dir.'
        )

    model_evaluator = ModelEvaluator()
    status = model_evaluator.load(args.dataset_name, args.annotation_image_dir,
                                  args.annotation_file_name)
    if (not status):
        print('Error loading the test dataset.')

    if (args.model_root_dir):
        model_root_dir = args.model_root_dir
    else:
        model_root_dir = NetworkFactory.model_deploy_dir()

    last_network = 'ONet'
    status = model_evaluator.create_detector(last_network, model_root_dir)
    if (not status):
        print('Error creating the face detector.')

    status = model_evaluator.evaluate(print_result=True)
    if (not status):
        print('Error evaluating the model')
Exemple #2
0
 def _generate_image_samples(self, annotation_image_dir,
                             annotation_file_name, base_number_of_images,
                             target_root_dir):
     face_dataset = SimpleFaceDataset()
     return (face_dataset.generate_samples(
         annotation_image_dir, annotation_file_name, base_number_of_images,
         NetworkFactory.network_size(self.network_name()), target_root_dir))
Exemple #3
0
 def _generate_landmark_samples(self, landmark_image_dir,
                                landmark_file_name, base_number_of_images,
                                target_root_dir):
     landmark_dataset = LandmarkDataset()
     return (landmark_dataset.generate(
         landmark_image_dir, landmark_file_name, base_number_of_images,
         NetworkFactory.network_size(self.network_name()), target_root_dir))
Exemple #4
0
def main(args):
    global face_detector
    global classifier_object

    if (not args.checkpoint_path):
        raise ValueError(
            'You must supply the checkpoint path with --checkpoint_path')
    if (not os.path.exists(args.checkpoint_path)):
        print(
            'The checkpoint path is missing. Error processing the data source without the checkpoint path.'
        )
        return (False)

    if (not args.dataset_dir):
        raise ValueError(
            'You must supply the dataset directory with --dataset_dir')
    if (not os.path.exists(args.dataset_dir)):
        print(
            'The dataset directory is missing. Error processing the data source without the dataset directory.'
        )
        return (False)

    if (args.model_root_dir):
        model_root_dir = args.model_root_dir
    else:
        model_root_dir = NetworkFactory.model_deploy_dir()

    last_network = 'ONet'
    face_detector = FaceDetector(last_network, model_root_dir)

    classifier_object = Classifier()
    if (not classifier_object.load_dataset(args.dataset_dir)):
        return (False)
    if (not classifier_object.load_model(args.checkpoint_path, args.model_name,
                                         args.gpu_memory_fraction)):
        return (False)

    image1 = cv2.imread(args.image1)
    input_image_height, input_image_width, input_image_channels = image1.shape
    #print(input_image_height, input_image_width)

    image2 = cv2.imread(args.image2)
    input_image_height, input_image_width, input_image_channels = image2.shape
    #print(input_image_height, input_image_width)

    i1 = features(image1)
    i2 = features(image2)

    #if(not (i1 and i2)):
    #return(False)

    result = l1_loss(i1, i2)
    print("The answer is " + str(result))

    result = l2_loss(i1, i2)
    print("The answer is " + str(result))

    result = dot_product(i1, i2)
    print("The answer is " + str(result))
Exemple #5
0
    def __init__(self, last_network='ONet', model_root_dir=None):
        if (not model_root_dir):
            self._model_root_dir = NetworkFactory.model_deploy_dir()
        else:
            self._model_root_dir = model_root_dir

        self._min_face_size = datasets_constants.minimum_face_size
        self._threshold = [0.9, 0.6, 0.7]
        #self._scale_factor = 0.79
        self._scale_factor = 1.0 / (math.sqrt(2.0))

        status_ok = True
        if (last_network in ['PNet', 'RNet', 'ONet']):
            self._pnet = NetworkFactory.network('PNet')
            pnet_model_path = os.path.join(self._model_root_dir,
                                           self._pnet.network_name())
            status_ok = self._pnet.setup_inference_network(
                pnet_model_path) and status_ok
        else:
            self._pnet = None

        if (last_network in ['RNet', 'ONet']):
            self._rnet = NetworkFactory.network('RNet')
            rnet_model_path = os.path.join(self._model_root_dir,
                                           self._rnet.network_name())
            status_ok = self._rnet.setup_inference_network(
                rnet_model_path) and status_ok
        else:
            self._rnet = None

        if (last_network in ['ONet']):
            self._onet = NetworkFactory.network('ONet')
            onet_model_path = os.path.join(self._model_root_dir,
                                           self._onet.network_name())
            status_ok = self._onet.setup_inference_network(
                onet_model_path) and status_ok
        else:
            self._onet = None

        if (not status_ok):
            raise SystemExit
    def generate_samples(self, annotation_image_dir, annotation_file_name,
                         model_train_dir, network_name, minimum_face_size,
                         target_root_dir):
        status, dataset = self._read(annotation_image_dir,
                                     annotation_file_name)
        if (not status):
            return (False)

        test_data = InferenceBatch(dataset['images'])

        previous_network = NetworkFactory.previous_network(network_name)
        if (not model_train_dir):
            model_train_dir = NetworkFactory.model_train_dir()
        face_detector = FaceDetector(previous_network, model_train_dir)
        face_detector.set_min_face_size(minimum_face_size)
        face_detector.set_threshold([0.6, 0.7, 0.7])

        detected_boxes, landmarks = face_detector.detect_face(test_data)

        return (self._generate_hard_samples(dataset, network_name,
                                            detected_boxes, minimum_face_size,
                                            target_root_dir))
Exemple #7
0
def main(args):
    if (not (args.network_name in ['PNet', 'RNet', 'ONet'])):
        raise ValueError(
            'The network name should be either PNet, RNet or ONet.')

    if (not args.dataset_root_dir):
        raise ValueError(
            'You must supply the input dataset directory with --dataset_root_dir.'
        )

    if (not args.test_annotation_file):
        raise ValueError(
            'You must supply face dataset annotations file used for evaluating the trained model with --test_annotation_file.'
        )
    if (not args.test_annotation_image_dir):
        raise ValueError(
            'You must supply face dataset image directory used for evaluating the trained model with --test_annotation_image_dir.'
        )

    if (args.network_name == 'PNet'):
        trainer = SimpleNetworkTrainer(args.network_name)
    else:
        trainer = HardNetworkTrainer(args.network_name)

    status = trainer.load_test_dataset(args.test_dataset,
                                       args.test_annotation_image_dir,
                                       args.test_annotation_file)
    if (not status):
        print(
            'Error loading the test dataset for evaluating the trained model.')

    if (args.train_root_dir):
        train_root_dir = args.train_root_dir
    else:
        train_root_dir = NetworkFactory.model_train_dir()

    status = trainer.train(args.network_name, args.dataset_root_dir,
                           train_root_dir, args.base_learning_rate,
                           args.max_number_of_epoch, args.log_every_n_steps)
    if (status):
        print(args.network_name +
              ' - network is trained and weights are generated at ' +
              train_root_dir)
    else:
        print('Error training the model.')
Exemple #8
0
    def _generate_image_samples(self, annotation_file_name,
                                annotation_image_dir, model_train_dir,
                                base_number_of_images, target_root_dir):
        status = True

        hard_face_dataset = HardFaceDataset()
        status = hard_face_dataset.generate_samples(
            annotation_image_dir, annotation_file_name, model_train_dir,
            self.network_name(), self._minimum_face_size,
            target_root_dir) and status

        simple_face_dataset = SimpleFaceDataset()
        status = simple_face_dataset.generate_samples(
            annotation_image_dir, annotation_file_name, base_number_of_images,
            NetworkFactory.network_size(self.network_name()),
            target_root_dir) and status

        return (status)
def main(args):
    probability_threshold = 50.0

    if (not args.input_tsv_file):
        raise ValueError(
            'You must supply input TSV file with --input_tsv_file.')
    if (not args.output_tsv_file):
        raise ValueError(
            'You must supply output TSV file with --output_tsv_file.')

    if (not os.path.isfile(args.input_tsv_file)):
        return (False)

    model_root_dir = NetworkFactory.model_deploy_dir()
    last_network = 'ONet'
    face_detector = FaceDetector(last_network, model_root_dir)

    classifier_object = Classifier()
    if (not classifier_object.load_dataset(args.dataset_dir)):
        return (False)
    if (not classifier_object.load_model(args.checkpoint_path, args.model_name,
                                         args.gpu_memory_fraction)):
        return (False)

    network_size = classifier_object.network_image_size()

    number_of_images = 0
    good_images = 0
    input_tsv_file = open(args.input_tsv_file, 'r')
    output_tsv_file = open(args.output_tsv_file, 'w')
    while (True):
        input_data = input_tsv_file.readline().strip()
        if (not input_data):
            break

        number_of_images += 1
        fields = input_data.split('\t')
        line_number = str(fields[0])
        image_string = fields[1]

        decoded_image_string = base64.b64decode(image_string)
        image_data = np.fromstring(decoded_image_string, dtype=np.uint8)
        input_image = cv2.imdecode(image_data, cv2.IMREAD_COLOR)
        height, width, channels = input_image.shape

        cv2.imwrite('image.png', input_image)
        #misc.imsave('image.png', input_image)
        input_image = misc.imread('image.png')

        input_clone = np.copy(input_image)
        boxes_c, landmarks = face_detector.detect(input_clone)

        face_probability = 0.0
        found = False
        crop_box = []
        for index in range(boxes_c.shape[0]):
            if (boxes_c[index, 4] > face_probability):
                found = True
                face_probability = boxes_c[index, 4]
                bounding_box = boxes_c[index, :4]
                crop_box = [
                    int(max(bounding_box[0], 0)),
                    int(max(bounding_box[1], 0)),
                    int(min(bounding_box[2], width)),
                    int(min(bounding_box[3], height))
                ]
        if (found):
            cropped_image = input_image[crop_box[1]:crop_box[3],
                                        crop_box[0]:crop_box[2], :]
        else:
            cropped_image = input_image

        #resized_image = cv2.resize(cropped_image, (network_size, network_size), interpolation=cv2.INTER_LINEAR)
        resized_image = misc.imresize(cropped_image,
                                      (network_size, network_size),
                                      interp='bilinear')

        class_names_probabilities = classifier_object.classify(
            resized_image, print_results=False)
        predicted_name = ''
        probability = 0.0
        if (len(class_names_probabilities) > 0):
            names = map(operator.itemgetter(0), class_names_probabilities)
            probabilities = map(operator.itemgetter(1),
                                class_names_probabilities)
            predicted_name = str(names[0])
            probability = probabilities[0]
            if ((probability > probability_threshold)
                    or (probability >
                        (probabilities[1] + probabilities[2] / 2.0))):
                good_images += 1

        print(number_of_images, ', predicted_name -', predicted_name,
              ', probability -', probability)
        print('Accuracy = ', (good_images * 100.0) / number_of_images, ' for ',
              number_of_images, ' images.')

        #cv2.imshow('image', cropped_image)
        #cv2.waitKey();

        output_tsv_file.write(line_number + '\t' + str(predicted_name) + '\t' +
                              str(probability) + '\n')

    print('Accuracy = ', (good_images * 100.0) / number_of_images, ' for ',
          number_of_images, ' images.')
    return (True)
Exemple #10
0
def main(args):

    if (not args.checkpoint_path):
        raise ValueError(
            'You must supply the checkpoint path with --checkpoint_path')
    if (not os.path.exists(args.checkpoint_path)):
        print(
            'The checkpoint path is missing. Error processing the data source without the checkpoint path.'
        )
        return (False)

    if (not args.dataset_dir):
        raise ValueError(
            'You must supply the dataset directory with --dataset_dir')
    if (not os.path.exists(args.dataset_dir)):
        print(
            'The dataset directory is missing. Error processing the data source without the dataset directory.'
        )
        return (False)

    if (args.model_root_dir):
        model_root_dir = args.model_root_dir
    else:
        model_root_dir = NetworkFactory.model_deploy_dir()

    last_network = 'ONet'
    face_detector = FaceDetector(last_network, model_root_dir)

    classifier_object = Classifier()
    if (not classifier_object.load_dataset(args.dataset_dir)):
        return (False)
    if (not classifier_object.load_model(args.checkpoint_path, args.model_name,
                                         args.gpu_memory_fraction)):
        return (False)

    webcamera = cv2.VideoCapture(args.webcamera_id)
    webcamera.set(3, 600)
    webcamera.set(4, 800)

    image = cv2.imread('/git-space/16.jpg')
    input_image_height, input_image_width, input_image_channels = image.shape
    print(input_image_height, input_image_width)

    face_probability = 0.75
    minimum_face_size = 24
    while True:
        start_time = cv2.getTickCount()
        status, current_frame = webcamera.read()

        is_busy = False
        if status:
            current_image = np.array(current_frame)
            image_clone = np.copy(current_image)

            if (is_busy):
                continue

            is_busy = True
            boxes_c, landmarks = face_detector.detect(image_clone)

            end_time = cv2.getTickCount()
            time_duration = (end_time - start_time) / cv2.getTickFrequency()
            frames_per_sec = 1.0 / time_duration
            cv2.putText(current_frame, '{:.2f} FPS'.format(frames_per_sec),
                        (10, 20), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 0, 0),
                        2)

            for index in range(boxes_c.shape[0]):
                bounding_box = boxes_c[index, :4]
                probability = boxes_c[index, 4]

                crop_box = []
                if (probability > face_probability):
                    height, width, channels = image_clone.shape

                    crop_box = [
                        int(max(bounding_box[0], 0)),
                        int(max(bounding_box[1], 0)),
                        int(min(bounding_box[2], width)),
                        int(min(bounding_box[3], height))
                    ]
                    cropped_image = image_clone[crop_box[1]:crop_box[3],
                                                crop_box[0]:crop_box[2], :]

                    crop_height, crop_width, crop_channels = cropped_image.shape
                    if (crop_height < minimum_face_size) or (
                            crop_width < minimum_face_size):
                        continue

                    cv2.rectangle(image_clone, (crop_box[0], crop_box[1]),
                                  (crop_box[2], crop_box[3]), (0, 255, 0), 1)

                    class_names_probabilities = classifier_object.classify(
                        cropped_image, 1)
                    predicted_name = class_names_probabilities[0][0]
                    probability = class_names_probabilities[0][1]

                    if (probability > args.threshold):
                        cv2.putText(
                            image_clone,
                            predicted_name + ' - {:.2f}'.format(probability),
                            (crop_box[0], crop_box[1] - 2),
                            cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)

            cv2.imshow("", image_clone)
            is_busy = False

            if cv2.waitKey(1) & 0xFF == ord('q'):
                break
        else:
            print('Error detecting the webcamera.')
            break

    webcamera.release()
Exemple #11
0
def main(args):
    if (args.model_root_dir):
        model_root_dir = args.model_root_dir
    else:
        if (args.test_mode):
            model_root_dir = NetworkFactory.model_train_dir()
        else:
            model_root_dir = NetworkFactory.model_deploy_dir()

    last_network = 'ONet'
    face_detector = FaceDetector(last_network, model_root_dir)
    webcamera = cv2.VideoCapture(args.webcamera_id)
    webcamera.set(3, 600)
    webcamera.set(4, 800)

    while True:
        start_time = cv2.getTickCount()
        status, current_frame = webcamera.read()
        if status:
            input_bgr_image = np.array(current_frame)
            image_height, image_width, image_channels = input_bgr_image.shape
            input_rgb_image = cv2.cvtColor(input_bgr_image, cv2.COLOR_BGR2RGB)

            #boxes_c, landmarks = face_detector.detect(input_bgr_image)
            boxes_c, landmarks = face_detector.detect(input_rgb_image)

            end_time = cv2.getTickCount()
            time_duration = (end_time - start_time) / cv2.getTickFrequency()
            frames_per_sec = 1.0 / time_duration
            cv2.putText(input_bgr_image, '{:.2f} FPS'.format(frames_per_sec),
                        (10, 20), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 0, 0),
                        2)

            for index in range(boxes_c.shape[0]):
                bounding_box = boxes_c[index, :4]
                probability = boxes_c[index, 4]
                crop_box = [
                    int(max(bounding_box[0], 0)),
                    int(max(bounding_box[1], 0)),
                    int(min(bounding_box[2], image_width)),
                    int(min(bounding_box[3], image_height))
                ]

                crop_width = crop_box[3] - crop_box[1]
                crop_height = crop_box[2] - crop_box[0]

                if (crop_height < args.minimum_face_size) or (
                        crop_width < args.minimum_face_size):
                    continue

                if (probability > args.threshold):
                    cv2.rectangle(input_bgr_image, (crop_box[0], crop_box[1]),
                                  (crop_box[2], crop_box[3]), (0, 255, 0), 1)
                    cv2.putText(input_bgr_image,
                                'Score - {:.2f}'.format(probability),
                                (crop_box[0], crop_box[1] - 2),
                                cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)

            cv2.imshow("", input_bgr_image)
            if cv2.waitKey(1) & 0xFF == ord('q'):
                break
        else:
            print('Error detecting the webcamera.')
            break

    webcamera.release()
    cv2.destroyAllWindows()
Exemple #12
0
    def train(self, network_name, dataset_root_dir, train_root_dir,
              base_learning_rate, max_number_of_epoch, log_every_n_steps):
        network_train_dir = self.network_train_dir(train_root_dir)
        if (not os.path.exists(network_train_dir)):
            os.makedirs(network_train_dir)

        image_size = self.network_size()

        image_batch, label_batch, bbox_batch, landmark_batch = self._read_data(
            dataset_root_dir)

        class_loss_ratio, bbox_loss_ratio, landmark_loss_ratio = NetworkFactory.loss_ratio(
            network_name)

        input_image = tf.placeholder(
            tf.float32,
            shape=[self._batch_size, image_size, image_size, 3],
            name='input_image')
        target_label = tf.placeholder(
            tf.float32, shape=[self._batch_size], name='target_label')
        target_bounding_box = tf.placeholder(
            tf.float32,
            shape=[self._batch_size, 4],
            name='target_bounding_box')
        target_landmarks = tf.placeholder(
            tf.float32, shape=[self._batch_size, 10], name='target_landmarks')

        output_class_probability, output_bounding_box, output_landmarks = self._network.setup_training_network(
            input_image)

        class_loss_op = class_loss_ohem(output_class_probability, target_label)
        bounding_box_loss_op = bounding_box_loss_ohem(
            output_bounding_box, target_bounding_box, target_label)
        landmark_loss_op = landmark_loss_ohem(output_landmarks,
                                              target_landmarks, target_label)

        class_accuracy_op = self._calculate_accuracy(output_class_probability,
                                                     target_label)
        L2_loss_op = tf.add_n(tf.losses.get_regularization_losses())

        total_loss = class_loss_ratio * class_loss_op + bbox_loss_ratio * bounding_box_loss_op + landmark_loss_ratio * landmark_loss_op + L2_loss_op
        train_op, learning_rate_op = self._train_model(base_learning_rate,
                                                       total_loss)

        init = tf.global_variables_initializer()
        self._session = tf.Session()

        #saver = tf.train.Saver(save_relative_paths=True, max_to_keep=3)
        saver = tf.train.Saver(
            save_relative_paths=True,
            max_to_keep=0)  # All checkpoint files are kept.
        self._session.run(init)

        tf.summary.scalar("class_loss", class_loss_op)
        tf.summary.scalar("bounding_box_loss", bounding_box_loss_op)
        tf.summary.scalar("landmark_loss", landmark_loss_op)
        tf.summary.scalar("class_accuracy", class_accuracy_op)
        summary_op = tf.summary.merge_all()

        logs_dir = os.path.join(network_train_dir, "logs")
        if (not os.path.exists(logs_dir)):
            os.makedirs(logs_dir)

        summary_writer = tf.summary.FileWriter(logs_dir, self._session.graph)
        coordinator = tf.train.Coordinator()

        threads = tf.train.start_queue_runners(
            sess=self._session, coord=coordinator)
        current_step = 0

        max_number_of_steps = int(self._number_of_samples / self._batch_size +
                                  1) * max_number_of_epoch

        global_step = 0
        epoch = 0
        skip_model_saving = False
        if (self._network.load_model(self._session, network_train_dir)):
            model_path = self._network.model_path()

            global_step = tf.train.global_step(self._session,
                                               self._global_step)
            epoch = int(
                global_step * self._batch_size / self._number_of_samples)

            skip_model_saving = True
            print(
                'Model is restored from model path - %s with global step - %s.'
                % (model_path, global_step))

        network_train_file_name = os.path.join(network_train_dir,
                                               self.network_name())
        self._session.graph.finalize()

        try:
            for step in range(global_step, max_number_of_steps):
                current_step = current_step + 1

                if coordinator.should_stop():
                    break

                image_batch_array, label_batch_array, bbox_batch_array, landmark_batch_array = self._session.run(
                    [image_batch, label_batch, bbox_batch, landmark_batch])
                image_batch_array, landmark_batch_array = self._random_flip_images(
                    image_batch_array, label_batch_array, landmark_batch_array)

                _, _, summary = self._session.run(
                    [train_op, learning_rate_op, summary_op],
                    feed_dict={
                        input_image: image_batch_array,
                        target_label: label_batch_array,
                        target_bounding_box: bbox_batch_array,
                        target_landmarks: landmark_batch_array
                    })

                if ((step + 1) % log_every_n_steps == 0):
                    current_class_loss, current_bbox_loss, current_landmark_loss, current_L2_loss, current_lr, current_accuracy = self._session.run(
                        [
                            class_loss_op, bounding_box_loss_op,
                            landmark_loss_op, L2_loss_op, learning_rate_op,
                            class_accuracy_op
                        ],
                        feed_dict={
                            input_image: image_batch_array,
                            target_label: label_batch_array,
                            target_bounding_box: bbox_batch_array,
                            target_landmarks: landmark_batch_array
                        })
                    print(
                        "(epoch - %d, step - %d) - (accuracy - %3f, class loss - %4f, bbox loss - %4f, landmark loss - %4f, L2 loss - %4f, lr - %f )"
                        % ((epoch + 1), (step + 1), current_accuracy,
                           current_class_loss, current_bbox_loss,
                           current_landmark_loss, current_L2_loss, current_lr))
                    summary_writer.add_summary(
                        summary, global_step=global_step)

                if (current_step * self._batch_size >=
                        self._number_of_samples):
                    if (skip_model_saving):
                        skip_model_saving = False
                    else:
                        print("epoch - %d, step - %d" % ((epoch + 1),
                                                         (step + 1)))
                        saver.save(
                            self._session,
                            network_train_file_name,
                            global_step=self._global_step)
                        self._evaluate(network_name, train_root_dir)

                    epoch = epoch + 1
                    current_step = 0

        except tf.errors.OutOfRangeError:
            print("Error")
        finally:
            coordinator.request_stop()
            summary_writer.close()
        coordinator.join(threads)
        self._session.close()

        return (True)
Exemple #13
0
def main(args):

	output_dir = os.path.expanduser(args.output_dir)
    	if(not os.path.exists(output_dir)):
        	os.mkdir(output_dir)

	is_processed = {}	
	probability_threshold = [ 0.95, 0.90, 0.85, 0.80 ]

	if(not args.input_tsv_file):
		raise ValueError('You must supply input TSV file with --input_tsv_file.')
	if(not os.path.isfile(args.input_tsv_file)):
		return(False)

	model_root_dir = NetworkFactory.model_deploy_dir()
	last_network='ONet'
	face_detector = FaceDetector(last_network, model_root_dir)

	classifier_object = Classifier()
	if(not classifier_object.load_dataset(args.dataset_dir)):
		return(False)
	if(not classifier_object.load_model(args.checkpoint_path, args.model_name, args.gpu_memory_fraction)):
		return(False)

	network_size = classifier_object.network_image_size()

	celebrity_count = 0	
	for current_threshold in probability_threshold:
		input_tsv_file = open(args.input_tsv_file, 'r')

		while( True ):
		
			input_data = input_tsv_file.readline().strip()
			if( not input_data ):
       				break			

       			fields = input_data.split('\t')		
       			class_name = str(fields[2]) 
			if class_name in is_processed.keys():
				continue

       			image_string = fields[1]
			image_search_rank = fields[3]
       			decoded_image_string = base64.b64decode(image_string)
       			image_data = np.fromstring(decoded_image_string, dtype=np.uint8)
       			input_image = cv2.imdecode(image_data, cv2.IMREAD_COLOR)
			height, width, channels = input_image.shape

			class_dir = fields[2] 
			img_name = class_dir + '.png'

			cv2.imwrite('image.png', input_image)
			#misc.imsave('image.png', input_image)
			input_image = misc.imread('image.png')	

			input_clone = np.copy(input_image)
			boxes_c, landmarks = face_detector.detect(input_clone)

			face_probability = 0.0
			found = False
			crop_box = []
       			for index in range(boxes_c.shape[0]):      			
				if(boxes_c[index, 4] > face_probability):
					found = True
      					face_probability = boxes_c[index, 4]
					bounding_box = boxes_c[index, :4]
      					crop_box = [int(max(bounding_box[0],0)), int(max(bounding_box[1],0)), int(min(bounding_box[2], width)), int(min(bounding_box[3], height))]
			if(found):
				cropped_image = input_image[crop_box[1]:crop_box[3],crop_box[0]:crop_box[2],:]			
			else:
				cropped_image = input_image

			#resized_image = cv2.resize(cropped_image, (network_size, network_size), interpolation=cv2.INTER_LINEAR)
			resized_image = misc.imresize(cropped_image, (network_size, network_size), interp='bilinear')

			class_names_probabilities = classifier_object.classify(resized_image, print_results=False)
			predicted_name = ''
			probability = 0.0
			if(len(class_names_probabilities) > 0):
				names = map(operator.itemgetter(0), class_names_probabilities)
				probabilities = map(operator.itemgetter(1), class_names_probabilities)
				predicted_name = str(names[0])
				probability = probabilities[0]
				if( class_name != predicted_name ):
					continue

				if(probability < current_threshold):
					continue  

			is_processed[class_name] = True

       			full_class_dir = os.path.join(output_dir, class_dir)
       			if not os.path.exists(full_class_dir):
       				os.mkdir(full_class_dir)
       				celebrity_count = celebrity_count + 1

       			full_path = os.path.join(full_class_dir, img_name)
       			cv2.imwrite(full_path, resized_image)            		

			#cv2.imshow('image', cropped_image)
			#cv2.waitKey();

	print('Processed ', celebrity_count, 'celebrities.')
	return(True)
Exemple #14
0
    def _generate_hard_samples(self, dataset, network_name, detected_boxes,
                               minimum_face_size, target_root_dir):

        image_file_names = dataset['images']
        ground_truth_boxes = dataset['bboxes']
        number_of_images = len(image_file_names)

        if (not (len(detected_boxes) == number_of_images)):
            return (False)

        target_face_size = NetworkFactory.network_size(network_name)

        positive_dir = os.path.join(target_root_dir, 'positive')
        part_dir = os.path.join(target_root_dir, 'part')
        negative_dir = os.path.join(target_root_dir, 'negative')

        if (not os.path.exists(positive_dir)):
            os.makedirs(positive_dir)
        if (not os.path.exists(part_dir)):
            os.makedirs(part_dir)
        if (not os.path.exists(negative_dir)):
            os.makedirs(negative_dir)

        positive_file = open(
            SimpleFaceDataset.positive_file_name(target_root_dir), 'w')
        part_file = open(SimpleFaceDataset.part_file_name(target_root_dir),
                         'w')
        negative_file = open(
            SimpleFaceDataset.negative_file_name(target_root_dir), 'w')

        generated_negative_samples = 0
        generated_positive_samples = 0
        generated_part_samples = 0

        for image_file_path, detected_box, ground_truth_box in zip(
                image_file_names, detected_boxes, ground_truth_boxes):
            ground_truth_box = np.array(ground_truth_box,
                                        dtype=np.float32).reshape(-1, 4)

            if (detected_box.shape[0] == 0):
                continue

            detected_box = convert_to_square(detected_box)
            detected_box[:, 0:4] = np.round(detected_box[:, 0:4])

            current_image = cv2.imread(image_file_path)

            per_image_face_images = 0
            for box in detected_box:
                x_left, y_top, x_right, y_bottom, _ = box.astype(int)
                width = x_right - x_left + 1
                height = y_bottom - y_top + 1

                if ((width < minimum_face_size) or (height < minimum_face_size)
                        or (x_left < 0) or (y_top < 0)
                        or (x_right > (current_image.shape[1] - 1))
                        or (y_bottom > (current_image.shape[0] - 1))):
                    continue

                current_IoU = IoU(box, ground_truth_box)
                cropped_image = current_image[y_top:y_bottom + 1,
                                              x_left:x_right + 1, :]
                resized_image = cv2.resize(
                    cropped_image, (target_face_size, target_face_size),
                    interpolation=cv2.INTER_LINEAR)

                if (np.max(current_IoU) < DatasetFactory.negative_IoU()):
                    continue
                else:
                    idx = np.argmax(current_IoU)
                    assigned_gt = ground_truth_box[idx]
                    x1, y1, x2, y2 = assigned_gt

                    offset_x1 = (x1 - x_left) / float(width)
                    offset_y1 = (y1 - y_top) / float(height)
                    offset_x2 = (x2 - x_right) / float(width)
                    offset_y2 = (y2 - y_bottom) / float(height)

                    if (np.max(current_IoU) >= DatasetFactory.positive_IoU()):
                        file_path = os.path.join(
                            positive_dir, "hard-positive-%s.jpg" %
                            generated_positive_samples)
                        positive_file.write(
                            file_path + ' 1 %.2f %.2f %.2f %.2f' %
                            (offset_x1, offset_y1, offset_x2, offset_y2) +
                            os.linesep)
                        cv2.imwrite(file_path, resized_image)
                        generated_positive_samples += 1
                        per_image_face_images += 1

                    elif (np.max(current_IoU) >= DatasetFactory.part_IoU()):
                        file_path = os.path.join(
                            part_dir,
                            "hard-part-%s.jpg" % generated_part_samples)
                        part_file.write(
                            file_path + ' -1 %.2f %.2f %.2f %.2f' %
                            (offset_x1, offset_y1, offset_x2, offset_y2) +
                            os.linesep)
                        cv2.imwrite(file_path, resized_image)
                        generated_part_samples += 1
                        per_image_face_images += 1

            needed_negative_images = int((1.0 * per_image_face_images *
                                          datasets_constants.negative_ratio) /
                                         (datasets_constants.positive_ratio +
                                          datasets_constants.part_ratio))
            needed_negative_images = max(1, needed_negative_images)

            current_negative_images = 0
            for box in detected_box:
                x_left, y_top, x_right, y_bottom, _ = box.astype(int)
                width = x_right - x_left + 1
                height = y_bottom - y_top + 1

                if ((width < minimum_face_size) or (height < minimum_face_size)
                        or (x_left < 0) or (y_top < 0)
                        or (x_right > (current_image.shape[1] - 1))
                        or (y_bottom > (current_image.shape[0] - 1))):
                    continue

                current_IoU = IoU(box, ground_truth_box)
                cropped_image = current_image[y_top:y_bottom + 1,
                                              x_left:x_right + 1, :]
                resized_image = cv2.resize(
                    cropped_image, (target_face_size, target_face_size),
                    interpolation=cv2.INTER_LINEAR)

                if ((np.max(current_IoU) < DatasetFactory.negative_IoU()) and
                    (current_negative_images < needed_negative_images)):
                    file_path = os.path.join(
                        negative_dir,
                        "hard-negative-%s.jpg" % generated_negative_samples)
                    negative_file.write(file_path + ' 0' + os.linesep)
                    cv2.imwrite(file_path, resized_image)
                    generated_negative_samples += 1
                    current_negative_images += 1

        negative_file.close()
        part_file.close()
        positive_file.close()

        return (True)
Exemple #15
0
def align_faces(args):

    class_names = DatasetAnalyzer.read_class_names(args.class_name_file)
    if (len(class_names) == 0):
        class_names = DatasetAnalyzer.get_class_names(args.source_dir)

    if (len(class_names) == 0):
        return (False)

    source_path = os.path.expanduser(args.source_dir)

    target_path = os.path.expanduser(args.target_dir)
    if (not os.path.exists(target_path)):
        os.makedirs(target_path)

    if (args.model_root_dir):
        model_root_dir = args.model_root_dir
    else:
        model_root_dir = NetworkFactory.model_deploy_dir()

    last_network = 'ONet'
    face_detector = FaceDetector(last_network, model_root_dir)
    face_detector.set_threshold([0.6, 0.7, 0.7])
    face_detector.set_min_face_size(20)

    total_no_of_images = 0
    successfully_aligned_images = 0

    if (args.class_name_file):
        prefix = args.class_name_file + '-'
    else:
        prefix = ""

    successful_images = open(prefix + 'successful.txt', 'w')
    unsuccessful_images = open(prefix + 'unsuccessful.txt', 'w')

    for class_name in class_names:

        source_class_dir = os.path.join(source_path, class_name)
        if (not os.path.isdir(source_class_dir)):
            continue

        target_class_dir = os.path.join(target_path, class_name)
        if (not os.path.exists(target_class_dir)):
            os.makedirs(target_class_dir)

        image_filenames = os.listdir(source_class_dir)
        for image_filename in image_filenames:

            source_relative_path = os.path.join(class_name, image_filename)
            source_filename = os.path.join(source_class_dir, image_filename)
            if (not os.path.isfile(source_filename)):
                continue

            total_no_of_images += 1

            target_filename = os.path.join(target_class_dir, image_filename)
            if (os.path.exists(target_filename)):
                continue

            try:
                current_image = cv2.imread(source_filename, cv2.IMREAD_COLOR)
            except (IOError, ValueError, IndexError) as error:
                unsuccessful_images.write(source_relative_path + os.linesep)
                continue

            if (current_image is None):
                continue

            image_height = current_image.shape[0]
            image_width = current_image.shape[1]

            boxes_c, landmarks = face_detector.detect(current_image)

            face_probability = 0.0
            found = False
            crop_box = np.zeros(4, dtype=np.int32)
            for index in range(boxes_c.shape[0]):
                if (boxes_c[index, 4] > face_probability):
                    found = True
                    face_probability = boxes_c[index, 4]
                    bounding_box = boxes_c[index, :4]

                    bounding_box_width = bounding_box[2] - bounding_box[0]
                    bounding_box_height = bounding_box[3] - bounding_box[1]

                    width_offset = (bounding_box_width * args.margin) / (2 *
                                                                         100.0)
                    height_offset = (bounding_box_height *
                                     args.margin) / (2 * 100.0)

                    crop_box[0] = int(max((bounding_box[0] - width_offset), 0))
                    crop_box[1] = int(max((bounding_box[1] - height_offset),
                                          0))
                    crop_box[2] = int(
                        min((bounding_box[2] + width_offset), image_width))
                    crop_box[3] = int(
                        min((bounding_box[3] + height_offset), image_height))

            if (found):
                cropped_image = current_image[crop_box[1]:crop_box[3],
                                              crop_box[0]:crop_box[2], :]
                resized_image = cv2.resize(cropped_image,
                                           (args.image_size, args.image_size),
                                           interpolation=cv2.INTER_LINEAR)

                cv2.imwrite(target_filename, resized_image)
                successful_images.write(source_relative_path + os.linesep)

                successfully_aligned_images += 1
            else:
                unsuccessful_images.write(source_relative_path + os.linesep)

    print('Total number of images are - %d' % total_no_of_images)
    print('Number of successfully aligned images are - %d' %
          successfully_aligned_images)
    print('Number of unsuccessful images are - %d' %
          (total_no_of_images - successfully_aligned_images))

    return (True)
Exemple #16
0
 def __init__(self, network_name):
     self._network = NetworkFactory.network(network_name)
     self._number_of_samples = 0
     self._batch_size = 384