def test_read_dataset(): print("===== start test_read_dataset") dataset = TfrecordReader(op.join(cfg.Paths.TFRECORD, "kitti_train")).get_dataset() for i, x in enumerate(dataset): print( f"=== index: {i}, image={x['image'].shape}, bbox={x['bboxes'].shape}" f", feature_l={x['feature_l'].shape}, feature_s={x['feature_s'].shape}" ) image = uf.to_uint8_image(x['image']) image = image[0].numpy() bboxes = x['bboxes'][0].numpy() image = tu.draw_boxes(image, bboxes, cfg.Tfrdata.CATEGORY_NAMES) cv2.imshow("image with boxes", image) features = [] for feat_name in cfg.Model.Output.FEATURE_ORDER: feature = x[feat_name][0].numpy() feature = feature[feature[..., 4] > 0] features.append(feature) feat_boxes = np.concatenate(features, axis=0) image = tu.draw_boxes(image, feat_boxes, cfg.Tfrdata.CATEGORY_NAMES) cv2.imshow("image with feature bboxes", image) key = cv2.waitKey() if key == ord('q'): break print("!!! test_read_dataset passed")
def show_example(self, example): category_names = cfg.Tfrdata.CATEGORY_NAMES image = tu.draw_boxes(example["image"], example["bboxes"], category_names) cv2.imshow("image with bboxes", image) features = [] for feat_name in cfg.Model.FEATURE_ORDER: feature = example[feat_name] feature = feature[feature[..., 4] > 0] # objectness == 1 features.append(feature) feat_boxes = np.concatenate(features, axis=0) image = tu.draw_boxes(example["image"], feat_boxes, category_names) cv2.imshow("image with feature bboxes", image) cv2.waitKey(100)
def test_kitti_reader(): print("===== start test_kitti_reader") dataset_cfg = cfg.Datasets.Kitti drive_mngr = KittiDriveManager(dataset_cfg.PATH, "train") drive_paths = drive_mngr.get_drive_paths() reader = KittiReader(drive_paths[0], "train", dataset_cfg) for i in range(reader.num_frames()): image = reader.get_image(i) bboxes = reader.get_bboxes(i) print(f"frame {i}, bboxes:\n", bboxes) boxed_image = tu.draw_boxes(image, bboxes, dataset_cfg.CATEGORIES_TO_USE) cv2.imshow("kitti", boxed_image) key = cv2.waitKey() if key == ord('q'): break print("!!! test_kitti_reader passed")