def build_anogan(self): # Generator self.g = self.generator(self.z, self.y) self.g_test = self.generator(self.z, self.y, reuse=True, is_train=False) # Discriminator d_real_fm, d_real = self.discriminator(self.x) d_fake_fm, d_fake = self.discriminator(self.g_test, reuse=True) t_vars = tf.trainable_variables() d_params = [v for v in t_vars if v.name.startswith('disc')] g_params = [v for v in t_vars if v.name.startswith('gen')] self.d_op = tf.train.AdamOptimizer(learning_rate=self.d_lr, beta1=self.beta1, beta2=self.beta2).minimize(loss=self.d_loss, var_list=d_params) if self.detect: self.d_loss = t.l1_loss(d_fake_fm, d_real_fm) # disc loss self.r_loss = t.l1_loss(self.x, self.g) # residual loss self.ano_loss = (1. - self.lambda_) * self.r_loss + self.lambda_ * self.d_loss tf.summary.scalar("loss/d_loss", self.d_loss) tf.summary.scalar("loss/r_loss", self.r_loss) tf.summary.scalar("loss/ano_loss", self.ano_loss) self.ano_op = tf.train.AdamOptimizer(learning_rate=self.g_lr, beta1=self.beta1, beta2=self.beta2).minimize(loss=self.ano_loss, var_list=g_params) else: self.d_real_loss = t.sce_loss(d_real, tf.ones_like(d_real)) self.d_fake_loss = t.sce_loss(d_fake, tf.zeros_like(d_fake)) self.d_loss = self.d_real_loss + self.d_fake_loss self.g_loss = t.sce_loss(d_fake, tf.ones_like(d_fake)) # Summary tf.summary.scalar("loss/d_fake_loss", self.d_fake_loss) tf.summary.scalar("loss/d_real_loss", self.d_real_loss) tf.summary.scalar("loss/d_loss", self.d_loss) tf.summary.scalar("loss/g_loss", self.r_loss) self.g_op = tf.train.AdamOptimizer(learning_rate=self.d_lr, beta1=self.beta1, beta2=self.beta2).minimize(loss=self.d_loss, var_list=d_params) # Merge summary self.merged = tf.summary.merge_all() # Model saver self.saver = tf.train.Saver(max_to_keep=1) if not self.detect: self.writer = tf.summary.FileWriter('./orig-model/', self.s.graph) else: self.writer = tf.summary.FileWriter('./ano-model/', self.s.graph)
def build_began(self): # Generator self.g = self.generator(self.z) # Discriminator d_real = self.discriminator(self.x) d_fake = self.discriminator(self.g, reuse=True) # Loss d_real_loss = t.l1_loss(self.x, d_real) d_fake_loss = t.l1_loss(self.g, d_fake) self.d_loss = d_real_loss - self.k * d_fake_loss self.g_loss = d_fake_loss # Convergence Metric self.balance = self.gamma * d_real_loss - self.g_loss # (=d_fake_loss) self.m_global = d_real_loss + tf.abs(self.balance) # k_t update self.k_update = tf.assign( self.k, tf.clip_by_value(self.k + self.lambda_k * self.balance, 0, 1)) # Summary tf.summary.scalar("loss/d_loss", self.d_loss) tf.summary.scalar("loss/d_real_loss", d_real_loss) tf.summary.scalar("loss/d_fake_loss", d_fake_loss) tf.summary.scalar("loss/g_loss", self.g_loss) tf.summary.scalar("misc/balance", self.balance) tf.summary.scalar("misc/m_global", self.m_global) tf.summary.scalar("misc/k_t", self.k) tf.summary.scalar("misc/d_lr", self.d_lr) tf.summary.scalar("misc/g_lr", self.g_lr) # Optimizer t_vars = tf.trainable_variables() d_params = [v for v in t_vars if v.name.startswith('d')] g_params = [v for v in t_vars if v.name.startswith('g')] self.d_op = tf.train.AdamOptimizer(learning_rate=self.d_lr_update, beta1=self.beta1, beta2=self.beta2).minimize( self.d_loss, var_list=d_params) self.g_op = tf.train.AdamOptimizer(learning_rate=self.g_lr_update, beta1=self.beta1, beta2=self.beta2).minimize( self.g_loss, var_list=g_params) # Merge summary self.merged = tf.summary.merge_all() # Model saver self.saver = tf.train.Saver(max_to_keep=1) self.writer = tf.summary.FileWriter('./model/', self.s.graph)
def build_dualgan(self): # Generator self.g = self.generator(self.z) # Discriminator d_real = self.discriminator(self.x) d_fake = self.discriminator(self.g, reuse=True) # Loss d_real_loss = t.l1_loss(self.x, d_real) d_fake_loss = t.l1_loss(self.g, d_fake) self.d_loss = d_real_loss + d_fake_loss self.g_loss = d_fake_loss # Summary tf.summary.scalar("loss/d_real_loss", d_real_loss) tf.summary.scalar("loss/d_fake_loss", d_fake_loss) tf.summary.scalar("loss/d_loss", self.d_loss) tf.summary.scalar("loss/g_loss", self.g_loss) # Optimizer t_vars = tf.trainable_variables() d_params = [v for v in t_vars if v.name.startswith('d')] g_params = [v for v in t_vars if v.name.startswith('g')] self.d_op = tf.train.RMSPropOptimizer(learning_rate=self.d_lr, decay=self.decay).minimize( self.d_loss, var_list=d_params) self.g_op = tf.train.RMSPropOptimizer(learning_rate=self.g_lr, decay=self.decay).minimize( self.g_loss, var_list=g_params) # Merge summary self.merged = tf.summary.merge_all() # Model saver self.saver = tf.train.Saver(max_to_keep=1) self.writer = tf.summary.FileWriter('./model/', self.s.graph)
def build_stargan(self): def gp_loss(real, fake, eps=self.epsilon): # alpha = tf.random_uniform(shape=real.get_shape(), minval=0., maxval=1., name='alpha') # diff = fake - real # fake data - real data # interpolates = real + alpha * diff interpolates = eps * real + (1. - eps) * fake d_interp = self.discriminator(interpolates, reuse=True) gradients = tf.gradients(d_interp, [interpolates])[0] slopes = tf.sqrt( tf.reduce_sum(tf.square(gradients), reduction_indices=[1])) gradient_penalty = tf.reduce_mean(tf.square(slopes - 1.)) return gradient_penalty x_img_a = self.x_A[:, :, :, :self.channel] x_attr_a = self.x_A[:, :, :, self.channel:] x_img_b = self.x_B[:, :, :, :self.channel] # x_attr_b = self.x_B[:, :, :, self.channel:] # Generator self.fake_B = self.generator(self.x_A) gen_in = tf.concat([self.fake_B, x_attr_a], axis=3) self.fake_A = self.generator(gen_in, reuse=True) # Discriminator d_src_real_b, d_aux_real_b = self.discriminator(x_img_b) g_src_fake_b, g_aux_fake_b = self.discriminator( self.fake_B, reuse=True) # used at updating G net d_src_fake_b, d_aux_fake_b = self.discriminator( self.fake_x_B, reuse=True) # used at updating D net # using WGAN-GP losses gp = gp_loss(x_img_b, self.fake_x_B) d_src_loss = tf.reduce_mean(d_src_fake_b) - tf.reduce_mean( d_src_real_b) + gp d_aux_loss = t.sce_loss(d_aux_real_b, self.y_B) self.d_loss = d_src_loss + self.lambda_cls * d_aux_loss g_src_loss = -tf.reduce_mean(g_src_fake_b) g_aux_fake_loss = t.sce_loss(g_aux_fake_b, self.y_B) g_rec_loss = t.l1_loss(x_img_a, self.fake_A) self.g_loss = g_src_loss + self.lambda_cls * g_aux_fake_loss + self.lambda_rec * g_rec_loss # Summary tf.summary.scalar("loss/d_src_loss", d_src_loss) tf.summary.scalar("loss/d_aux_loss", d_aux_loss) tf.summary.scalar("loss/d_loss", self.d_loss) tf.summary.scalar("loss/g_src_loss", g_src_loss) tf.summary.scalar("loss/g_aux_fake_loss", g_aux_fake_loss) tf.summary.scalar("loss/g_rec_loss", g_rec_loss) tf.summary.scalar("loss/g_loss", self.g_loss) # Optimizer t_vars = tf.trainable_variables() d_params = [v for v in t_vars if v.name.startswith('d')] g_params = [v for v in t_vars if v.name.startswith('g')] self.d_op = tf.train.AdamOptimizer( learning_rate=self.d_lr * self.lr_decay, beta1=self.beta1).minimize(self.d_loss, var_list=d_params) self.g_op = tf.train.AdamOptimizer( learning_rate=self.g_lr * self.lr_decay, beta1=self.beta1).minimize(self.g_loss, var_list=g_params) # Merge summary self.merged = tf.summary.merge_all() # Model saver self.saver = tf.train.Saver(max_to_keep=1) self.writer = tf.summary.FileWriter('./model/', self.s.graph)