def test_layer_tuples(self): m = theanets.Regressor((1, (2, 'relu'), 3)) assert len(m.layers) == 3 assert m.layers[1].kwargs['activation'] == 'relu'
def test_layer_dicts(self): m = theanets.Regressor((1, dict(size=2, activation='relu', form='rnn'), 3)) assert len(m.layers) == 3 assert m.layers[1].kwargs['activation'] == 'relu' assert isinstance(m.layers[1], theanets.layers.recurrent.RNN)
def test_updates(self): m = theanets.Regressor((15, 13)) assert not m.updates()
def test_layer_ints(self): m = theanets.Regressor((1, 2, 3)) assert len(m.layers) == 3
def _build(self, *hiddens, **kwargs): return theanets.Regressor(layers=(self.DIGIT_SIZE, ) + hiddens, hidden_activation='logistic', **kwargs)
def net(self): return theanets.Regressor((10, 15, 14, 13))
def test_feed_forward(self): net = theanets.Regressor( (self.NUM_INPUTS, self.a, self.b, self.l, self.NUM_OUTPUTS)) out = net.predict(self.INPUTS) assert out.shape == (self.NUM_EXAMPLES, self.NUM_OUTPUTS)
import numpy as np import theanets import linecache net = theanets.Regressor([353, 150, 1]) net.load('model_regressor_nomen_final') #inputs = np.loadtxt('vector_list_usable_1') #outputs = np.loadtxt('top_or_not_usable_binary_1') g = np.loadtxt('vector_nomen_10') #h = np.random.randn(34308, 1).astype('f') #h = np.loadtxt('top_or_not_usable_binary_9') #w = [h[x:x+1] for x in xrange(0, len(h), 1)] ##convert into list of numpy arrays #q = np.asarray(w) ##convert into numpy array of numpy arrays #net.train([g, q]) #net.save('model_regressor_nomen_final') result = net.predict(g) #score = net.score() np.savetxt('result_regressor_nomen', result) #np.savetxt('score', score) #test = np.loadtxt('vector_list_usable_9') #print(test)
def test_kl(): net = theanets.Regressor([ u.NUM_INPUTS, u.NUM_HID1, (u.NUM_OUTPUTS, 'softmax')], loss='kl') u.assert_progress(net, [u.INPUTS, abs(u.OUTPUTS)])
def test_regression(loss): net = theanets.Regressor([ u.NUM_INPUTS, u.NUM_HID1, u.NUM_OUTPUTS], loss=loss) u.assert_progress(net, u.REG_DATA)
def test_kl(self): self.exp = theanets.Regressor( [self.NUM_INPUTS, 10, (self.NUM_OUTPUTS, 'softmax')], loss='kl') assert self.exp.losses[ 0].__class__.__name__ == 'KullbackLeiblerDivergence' self.assert_progress('sgd', [self.INPUTS, abs(self.OUTPUTS)])