Exemple #1
0
def test_local_gpualloc_empty():
    i = theano.tensor.iscalar()
    ii = theano.tensor.iscalar()

    # Test with vector
    # Should not be moved as the only client is the output
    a = tensor.AllocEmpty('float32')(i)
    f = theano.function([i], a, mode=mode_with_gpu)
    topo = f.maker.fgraph.toposort()
    assert len(topo) == 1
    assert isinstance(topo[0].op, theano.tensor.AllocEmpty)
    # This return not initilized data, so we can only check the shape
    assert f(3).shape == (3, )

    # Test with vector
    # Should be moved
    a = tensor.AllocEmpty('float32')(i)
    f = theano.function([i], a.cumsum(), mode=mode_with_gpu)
    topo = f.maker.fgraph.toposort()
    assert len(topo) == 3
    assert isinstance(topo[0].op, GpuAllocEmpty)
    # This return not initilized data, so we can only check the shape
    assert f(3).shape == (3, )

    # Test with matrix
    a = tensor.AllocEmpty('float32')(i, ii)
    f = theano.function([i, ii], a.cumsum(axis=0), mode=mode_with_gpu)
    topo = f.maker.fgraph.toposort()
    assert len(topo) == 3
    assert isinstance(topo[0].op, GpuAllocEmpty)
    # This return not initilized data, so we can only check the shape
    assert f(3, 4).shape == (3, 4)
Exemple #2
0
def test_gpuallocempty():

    f_gpu = theano.function([], tensor.AllocEmpty('float32')(2,3),
                        mode=mode_with_gpu)
    l_gpu = f_gpu.maker.fgraph.toposort()

    assert numpy.any([isinstance(x.op, basic_ops.GpuAllocEmpty) for x in l_gpu])

    f_cpu = theano.function([], tensor.AllocEmpty('int32')(2,3))
    l_cpu = f_cpu.maker.fgraph.toposort()
    assert not numpy.any([isinstance(x.op, basic_ops.GpuAllocEmpty) for x in l_cpu])
Exemple #3
0
def test_local_gpualloc_empty():
    i = theano.tensor.iscalar()
    ii = theano.tensor.iscalar()

    # Test with vector
    a = tensor.AllocEmpty('float32')(i)
    f = theano.function([i], a, mode=mode_with_gpu)
    topo = f.maker.fgraph.toposort()
    assert len(topo) == 2
    assert isinstance(topo[0].op, GpuAllocEmpty)
    # This return not initilized data, so we can only check the shape
    assert f(3).shape == (3, )

    # Test with matrix
    a = tensor.AllocEmpty('float32')(i, ii)
    f = theano.function([i, ii], a, mode=mode_with_gpu)
    topo = f.maker.fgraph.toposort()
    assert len(topo) == 2
    assert isinstance(topo[0].op, GpuAllocEmpty)
    # This return not initilized data, so we can only check the shape
    assert f(3, 4).shape == (3, 4)
Exemple #4
0
def expand_empty(tensor_var, size):
    """
    Transforms the shape of a tensor from (d1, d2 ... ) to ( d1+size, d2, ..)
    by adding uninitialized memory at the end of the tensor.

    """

    if size == 0:
        return tensor_var
    shapes = [tensor_var.shape[x] for x in xrange(tensor_var.ndim)]
    new_shape = [size + shapes[0]] + shapes[1:]
    empty = tensor.AllocEmpty(tensor_var.dtype)(*new_shape)

    return tensor.set_subtensor(empty[:shapes[0]], tensor_var)
Exemple #5
0
def local_gpua_gemmbatch(node, context_name):
    a, b = node.inputs
    c = tensor.AllocEmpty(a.dtype)(a.shape[0], a.shape[1], b.shape[2])
    return gpugemmbatch_no_inplace(c, 1.0, a, b, 0.0)