Exemple #1
0
    def __init__(self, in_size, out_size):

        PredictorModel.__init__(self)

        self.input=T.zmatrix('X')
        self.y = T.zmatrix('y')

        # Init weights
        self.W = theano.shared(value=numpy.zeros((in_size, out_size), dtype=numpy.complex128), name='W', borrow=True)

        # Init bias
        self.b = theano.shared(value=numpy.zeros((out_size,), dtype=numpy.complex128), name='b', borrow=True)

        self.y_pred = self.get_prediction(self.input)

        # model parameters
        self.params = [self.W, self.b]

        learning_rate = T.scalar('learning_rate')  # learning rate to use

        self.cost = lambda: self.negative_log_likelihood()
        self.train_model = theano.function(inputs=[self.input,self.y,theano.Param(learning_rate, default=0.13)],
                                           outputs=self.cost(),
                                           updates=self.get_updates(learning_rate),
                                           givens={})
        self.pred_input = T.vector('pred_input')
        self.predict = theano.function(inputs=[self.pred_input], outputs=self.get_prediction(self.pred_input))
Exemple #2
0
 def test_illegal(self):
     try:
         x = zmatrix()
         function([x], cast(x, "float64"))(np.ones((2, 3), dtype="complex128"))
     except TypeError:
         return
     assert 0
Exemple #3
0
 def make_node(self, frames, n, axis):
     """ compute an n-point fft of frames along given axis """
     _frames = tensor.as_tensor(frames, ndim=2)
     _n = tensor.as_tensor(n, ndim=0)
     _axis = tensor.as_tensor(axis, ndim=0)
     if self.half and _frames.type.dtype.startswith('complex'):
         raise TypeError('Argument to HalfFFT must not be complex', frames)
     spectrogram = tensor.zmatrix()
     buf = generic()
     # The `buf` output is present for future work
     # when we call FFTW directly and re-use the 'plan' that FFTW creates.
     # In that case, buf would store a CObject encapsulating the plan.
     rval = Apply(self, [_frames, _n, _axis], [spectrogram, buf])
     return rval
Exemple #4
0
        fc1 = T.maximum(T.dot(inp, weight1) ** np.sqrt(2), 0)
        fc2 = T.maximum(T.tan(T.dot(fc1, weight2)), 0)
        fc3 = T.dot(fc2, weight3)
    """
    """
        MODEL 3:
    """

    fc1 = T.dot(T.minimum(inp, 0), weight1)**np.sqrt(2)
    fc2 = T.tan(T.dot(fc1, weight2))
    fc3 = T.dot(fc2, weight3)

    return fc3


inp = T.zmatrix()
output = model(inp)

nn = theano.function(inputs=[inp], outputs=[output])

z = None
c = None
heatmap = None


def graph(x_min, x_max, y_min, y_max, step, graph=True):
    """
        graph(...) -> None

        Given window parameters, graphs the fractal with 30 iterations and a threshold of 0.8
    """