Exemple #1
0
#!/usr/bin/python

import numpy as np
import matplotlib.pyplot as plt
import scipy.stats.mstats as st
import thesis_redux_tools as rt

name_pho  = np.loadtxt("../../inputs/SFHs_set3/set3_list.log", usecols = (0,), dtype = "|S")
name_sed  = np.loadtxt("../../outputs/spectroscopic_fit/names.log", dtype = "|S")
order_sed = [j for i in xrange(120) for j in xrange(12000) if name_pho[i] == name_sed[j][:12]+".fits.gz"]

tform, mass, burstm, burstm, hdelta, b4000 = np.loadtxt("../../inputs/set3_catalog.txt", usecols = (5, 16, 17, 18, 44, 45), unpack = True)

table = np.loadtxt("../../outputs/photometric_fit/remote_set3/photofit_SDSS.physical")
table[:, 2:6] = 10 ** table[:, 2:6]
table = rt.binned_stat(table, 100)

ave_sed = np.loadtxt("../../outputs/spectroscopic_fit/table_din.v3.log")[order_sed]
ave_sed[:, 1:3] = 10 ** ave_sed[:, 1:3]
ave_sed = rt.binned_stat(ave_sed, bin_size = 100)

#res_pho = [rt.err(table[:, i], table[:, i + 1]) if i in [0] else rt.err(table[:, i], table[:, i + 1], False) for i in xrange(0, 10, 2)]
#res_sed = [rt.err(table[:, ::2][:, i], ave_sed[:, i]) if i in [0] else rt.err(table[:, ::2][:, i], ave_sed[:, i], False) for i in xrange(5)]

# --------------------------------------------------------------------------------------------------
lm = np.array([0, 8])

plt.figure(figsize = (6.5, 6))
plt.plot(lm, lm, "--k")

tks, tls = [], []
Exemple #2
0
	r_sam.append(f[0].header["rmag"])
	i_sam.append(f[0].header["imag"])
	z_sam.append(f[0].header["zmag"])
  
	phy_sam.append([f[0].header["mass"], f[0].header["mwla"], f[0].header["rfwla"], f[0].header["z"], f[0].header["v"] - f[0].header["pv"]])

u_sam = np.array(u_sam)
g_sam = np.array(g_sam)
r_sam = np.array(r_sam)
i_sam = np.array(i_sam)
z_sam = np.array(z_sam)

phy_sam = np.array(phy_sam)
phy_mod = np.loadtxt("../../outputs/photometric_fit/remote_set1/phot_fit.models", usecols = range(5, 10))

med = binned_stat(phy_mod, 100, stat = "median")
std = binned_stat(phy_mod, 100, stat = "stdev")

# read SFH library data ----------------------------------------------------------------------------

sfhs_cat = "../../inputs/run07_sfh_catalog.txt"
u_lib, g_lib, r_lib, i_lib, z_lib, V, pV, mu = np.genfromtxt(sfhs_cat, missing = '""', usecols = range(39, 44) + [38, 25, 14], unpack = True)

# define mask --------------------------------------------------------------------------------------

dmask = (V - pV < 2.0) & (mu <= 1.0)

# MAKE PLOT ========================================================================================

# define color-color plane -------------------------------------------------------------------------
Exemple #3
0
        f[0].header["mass"], f[0].header["mwla"], f[0].header["rfwla"],
        f[0].header["z"], f[0].header["v"] - f[0].header["pv"]
    ])

u_sam = np.array(u_sam)
g_sam = np.array(g_sam)
r_sam = np.array(r_sam)
i_sam = np.array(i_sam)
z_sam = np.array(z_sam)

phy_sam = np.array(phy_sam)
phy_mod = np.loadtxt(
    "../../outputs/photometric_fit/remote_set1/phot_fit.models",
    usecols=range(5, 10))

med = binned_stat(phy_mod, 100, stat="median")
std = binned_stat(phy_mod, 100, stat="stdev")

# read SFH library data ----------------------------------------------------------------------------

sfhs_cat = "../../inputs/run07_sfh_catalog.txt"
u_lib, g_lib, r_lib, i_lib, z_lib, V, pV, mu = np.genfromtxt(
    sfhs_cat, missing='""', usecols=range(39, 44) + [38, 25, 14], unpack=True)

# define mask --------------------------------------------------------------------------------------

dmask = (V - pV < 2.0) & (mu <= 1.0)

# MAKE PLOT ========================================================================================

# define color-color plane -------------------------------------------------------------------------
from mpl_toolkits.axes_grid1.inset_locator import inset_axes
from scipy.ndimage.filters import gaussian_filter
from matplotlib import rc, cm
from matplotlib.colors import ListedColormap as LC
import sys

sdss_cat = "../../../degree_thesis/data/photometry/total_photometry.txt"
u_obs, g_obs, r_obs, i_obs, z_obs, redshift = np.loadtxt(sdss_cat, usecols = range(1, 6) + [11], unpack = True)

name_sed  = np.loadtxt("../../outputs/spectroscopic_fit/names.log", dtype = "|S")
name_pho  = np.loadtxt("../../inputs/SFHs_set3/set3_list.log", usecols = (0,), dtype = "|S")
order_sed = [j for i in xrange(120) for j in xrange(12000) if name_pho[i] == name_sed[j][:12]+".fits.gz"]

table = np.loadtxt("../../outputs/photometric_fit/remote_set3/photofit_SDSS.physical")

ave_sed = rt.binned_stat(np.loadtxt("../../outputs/spectroscopic_fit/table_din.v4.log")[order_sed], bin_size = 1)
chis    = ave_sed[:, 5:]
ave_sed = ave_sed[:, :5]

sfhs_cat = "../../inputs/run09_sfh_catalog.txt"
u_lib, g_lib, r_lib, i_lib, z_lib, tm, tf, tform, Z, V, pV, mass, mass1gyr, A, mu = np.genfromtxt(sfhs_cat,
missing = '""', usecols = range(39, 44) + [33, 35, 5, 12, 38, 25, 16, 18, 19, 14], unpack = True)

u, g, r, i, z = np.genfromtxt("../../inputs/set3_catalog.txt", usecols = range(39, 39 + 5), unpack = True, missing = '""')

table[:, 6:8] = np.log10(table[:, 6:8])

res_sed = [rt.err(table[:, ::2][:, i], ave_sed[:, i]) if i in [0] else rt.err(table[:, ::2][:, i], ave_sed[:, i], False) for i in xrange(5)]

res_sed.pop(2)
Exemple #5
0
    i.append(f[0].header["imag"])
    z.append(f[0].header["zmag"])

    sfr.append(f[0].header["mass1gyr"] / f[0].header["mass"])

u = np.repeat(u, 100)
g = np.repeat(g, 100)
r = np.repeat(r, 100)
i = np.repeat(i, 100)
z = np.repeat(z, 100)

sfr = np.array(sfr)

ur = (u - r)[table[:, 6] > 0.4]

table = rt.binned_stat(table, 100, "median")
ur = rt.binned_stat(ur, 100, "median")

table[:, 6:8] = np.log10(table[:, 6:8])
res = [
    rt.err(table[:,
                 i], table[:, i +
                           1]) if i == 0 else rt.err(table[:,
                                                           i], table[:, i +
                                                                     1], False)
    for i in xrange(0, 10, 2)
]
lab = [
    r"$\Delta\,M/M_\textrm{SSAG}$", r"$\Delta\,\left<\log(t)\right>_M$",
    r"$\Delta\,\left<\log(t)\right>_{L_r}$",
    r"$\Delta\,\left<\log(Z/Z_\odot)\right>_M$", r"$\Delta\,A_V$"
#!/usr/bin/python

import numpy as np
import matplotlib.pyplot as plt
import scipy.stats.mstats as st
import thesis_redux_tools as rt

table = np.loadtxt(
    "../../outputs/photometric_fit/photoz/photofit_JPASz3p00.physical")
table = rt.binned_stat(table, 50)

table[:, 2:6] = 10**table[:, 2:6]

res_pho = [
    rt.err(table[:, i], table[:, i + 1]) if i in [0] else rt.err(
        table[:, i], table[:, i + 1], False) for i in xrange(0, 10, 2)
]

#print table[np.argmax(res_pho[0]), 0], np.max(res_pho[0])
#print table[np.argmax(res_pho[1]), 2], np.max(res_pho[1])

mask = table[:, 6] > 0.4

# --------------------------------------------------------------------------------------------------
lm = np.array([0, 1])

plt.figure(figsize=(8, 7))
plt.plot(lm, lm, "--k")

tks, tls = [], []
for per in [10, 30, 50]:
Exemple #7
0
                      dtype="|S")
name_sed = np.loadtxt("../../outputs/spectroscopic_fit/names.log", dtype="|S")
order_sed = [
    j for i in xrange(120) for j in xrange(12000)
    if name_pho[i] == name_sed[j][:12] + ".fits.gz"
]

tform, mass, burstm, burstm, hdelta, b4000 = np.loadtxt(
    "../../inputs/set3_catalog.txt",
    usecols=(5, 16, 17, 18, 44, 45),
    unpack=True)

table = np.loadtxt(
    "../../outputs/photometric_fit/remote_set3/photofit_SDSS.physical")
table[:, 2:6] = 10**table[:, 2:6]
table = rt.binned_stat(table, 100)

ave_sed = np.loadtxt(
    "../../outputs/spectroscopic_fit/table_din.v3.log")[order_sed]
ave_sed[:, 1:3] = 10**ave_sed[:, 1:3]
ave_sed = rt.binned_stat(ave_sed, bin_size=100)

#res_pho = [rt.err(table[:, i], table[:, i + 1]) if i in [0] else rt.err(table[:, i], table[:, i + 1], False) for i in xrange(0, 10, 2)]
#res_sed = [rt.err(table[:, ::2][:, i], ave_sed[:, i]) if i in [0] else rt.err(table[:, ::2][:, i], ave_sed[:, i], False) for i in xrange(5)]

# --------------------------------------------------------------------------------------------------
lm = np.array([0, 8])

plt.figure(figsize=(6.5, 6))
plt.plot(lm, lm, "--k")
#!/usr/bin/python

import numpy as np
import matplotlib.pyplot as plt
import scipy.stats.mstats as st
import thesis_redux_tools as rt

table = np.loadtxt("../../outputs/photometric_fit/photoz/photofit_JPASz3p00.physical")
table = rt.binned_stat(table, 50)

table[:, 2:6] = 10 ** table[:, 2:6]

res_pho = [rt.err(table[:, i], table[:, i + 1]) if i in [0] else rt.err(table[:, i], table[:, i + 1], False) for i in xrange(0, 10, 2)]

#print table[np.argmax(res_pho[0]), 0], np.max(res_pho[0])
#print table[np.argmax(res_pho[1]), 2], np.max(res_pho[1])

mask = table[:, 6] > 0.4

# --------------------------------------------------------------------------------------------------
lm = np.array([0, 1])

plt.figure(figsize = (8, 7))
plt.plot(lm, lm, "--k")

tks, tls = [], []
for per in [10, 30, 50] :
  m1, m2 = rt.err_slope(per)

  tks.append(m2 * lm[1])
  tls.append((str(per) + r"\%"))