def uniformMixPMF_expWaitTimes(lams=[.2, .1], max_wait=20, verbose=True):
    '''MAKE DOCSTRING BETTER BY OVERWRITING WHAT'S BELOW
    Attempt to sketch out the scenario in the hint, assuming that
    bus arrival times are Exp(5) or Exp(10), with either exponential
    distribution having an equal likelihood of happening.


    lams: list of lambdas for the exponential distributions being considered. Note that
    in order to produce wait time estimates in minutes, these lambdas are fractional
    (number of buses arriving per minute)
    max_wait: what is the maximum 
    verbose: Want to call Suite.Print() on each PMF and the metaPMF? 


    TODO: Reparameterize to (0, N-1) to match conventions with expWaitTimes
    '''
    metaPmf = thinkbayes.Pmf()
    for lam in lams:
        expPmf = thinkbayes.MakeExponentialPmf(lam=lam,
                                               high=max_wait - 1,
                                               n=max_wait)
        if verbose:
            print 'Results for wait time {}'.format(int(1 / lam))
            expPmf.Print()
        metaPmf.Set(expPmf, 1)
    metaPmf.Normalize()
    exp_bounds = '_'.join([str(int(1 / v)) for v in lams])
    mix_name = 'unifMix-expWaits{}'.format(exp_bounds)
    expMix = thinkbayes.MakeMixture(metapmf=metaPmf, name=mix_name)
    if verbose:
        print('Results for {}'.format(expMix.name))
        expMix.Print()
    return expMix
Exemple #2
0
 def _MixPmf(suite):
     high = 10
     metapmf = thinkbayes.Pmf()
     for lam, prob in suite.Items():
         pmf = thinkbayes.MakePoissonPmf(lam, high, step=1)
         metapmf.Set(pmf, y=prob)
     return thinkbayes.MakeMixture(metapmf, name='mix')
def uniformMixPMF_uniformWaitTimes(wait_times=[5, 10], verbose=False):
    '''Attempt to sketch out the scenario in the hint, assuming that
    bus arrival times are either Unif(1,5) and Unif(1,10), with either uniform
    distribution having an equal likelihood of happening.


    wait_times: list of upper bounds for Unif(1, T) distributions
    verbose: Want to call Suite.Print() on each PMF and the metaPMF? 


    TODO: Reparameterize to (0, N-1) to match conventions with expWaitTimes
    '''
    metaPmf = thinkbayes.Pmf()
    for wait in wait_times:
        unifPmf = thinkbayes.MakeUniformPmf(low=0, high=wait - 1, n=wait)
        if verbose:
            print('Results for wait time {}'.format(wait))
            unifPmf.Print()
        metaPmf.Set(unifPmf, 1)
    metaPmf.Normalize()
    unif_bounds = '_'.join([str(w) for w in wait_times])
    mix_name = 'unifMix-unifWaits{}'.format(unif_bounds)
    unifMix = thinkbayes.MakeMixture(metapmf=metaPmf, name=mix_name)
    if verbose:
        print('Results for {}'.format(unifMix.name))
        unifMix.Print()
    return unifMix
Exemple #4
0
    def MakeRawScoreDist(self, efficacies):
        """Makes the distribution of raw scores for given difficulty.

        efficacies: Pmf of efficacy
        """
        pmfs = thinkbayes.Pmf()
        for efficacy, prob in efficacies.Items():
            scores = self.PmfCorrect(efficacy)
            pmfs.Set(scores, prob)

        mix = thinkbayes.MakeMixture(pmfs)
        return mix
Exemple #5
0
def PmfOfWaitTime(pmf_zb):
    """Distribution of wait time.

    pmf_zb: dist of gap time as seen by a random observer

    Returns: dist of wait time (also dist of elapsed time)
    """
    metapmf = thinkbayes.Pmf()
    for gap, prob in pmf_zb.Items():
        uniform = MakeUniformPmf(0, gap)
        metapmf.Set(uniform, prob)

    pmf_y = thinkbayes.MakeMixture(metapmf, name='y')
    return pmf_y
Exemple #6
0
def MakeGoalTimePmf(suite):
    """Makes the distribution of time til first goal.

    suite: distribution of goal-scoring rate

    returns: Pmf of goals per game
    """
    metapmf = thinkbayes.Pmf()

    for lam, prob in suite.Items():
        pmf = thinkbayes.MakeExponentialPmf(lam, high=2, n=2001)
        metapmf.Set(pmf, prob)

    mix = thinkbayes.MakeMixture(metapmf, name=suite.name)
    return mix
Exemple #7
0
def MakeGoalPmf(suite, high=10):
    """Makes the distribution of goals scored, given distribution of lam.

    suite: distribution of goal-scoring rate
    high: upper bound

    returns: Pmf of goals per game
    """
    metapmf = thinkbayes.Pmf()

    for lam, prob in suite.Items():
        pmf = thinkbayes.MakePoissonPmf(lam, high)
        metapmf.Set(pmf, prob)

    mix = thinkbayes.MakeMixture(metapmf, name=suite.name)
    return mix
Exemple #8
0
    def __init__(self, wtc, are, num_passengers=15):
        """Constructor.

        wtc: WaitTimeCalculator
        are: ArrivalTimeEstimator
        num_passengers: number of passengers seen on the platform
        """
        self.metapmf = thinkbayes.Pmf()

        for lam, prob in sorted(are.post_lam.Items()):
            ete = ElapsedTimeEstimator(wtc, lam, num_passengers)
            self.metapmf.Set(ete.pmf_y, prob)

        self.mixture = thinkbayes.MakeMixture(self.metapmf)

        lam = are.post_lam.Mean()
        ete = ElapsedTimeEstimator(wtc, lam, num_passengers)
        self.point = ete.pmf_y
Exemple #9
0
def CH5_6():
    """
    混合分布, 汇总多个分布的贡献

    骰子个数    骰子面数
      5          4-sides
      4          6-sides
      3          8-sides
      2         12-sides
      1         20-sides
    """
    thinkplot.PrePlot(num=2)

    # (权重, 骰子)
    dices = [(5, Die(4)), (4, Die(6)), (3, Die(8)), (2, Die(12)), (1, Die(20))]
    mix = thinkbayes.Pmf()
    for w, die in dices:
        for v, p in die.Items():
            mix.Incr(v, w * p)
    mix.Normalize()
    mix.name = 'mix-1'
    thinkplot.Pmf(mix)

    # 方法2
    pmf_dices = thinkbayes.Pmf()
    pmf_dices.Set(Die(4), y=5)
    pmf_dices.Set(Die(6), y=4)
    pmf_dices.Set(Die(8), y=3)
    pmf_dices.Set(Die(12), y=2)
    pmf_dices.Set(Die(20), y=1)
    pmf_dices.Normalize()
    mix = thinkbayes.MakeMixture(pmf_dices, name='mix-2')
    mix.name = 'mix-2'
    thinkplot.Pmf(mix)

    thinkplot.Show()
Exemple #10
0
 def DistOfN(self, name=''):
     """Returns the PMF of n."""
     return thinkbayes.MakeMixture(self, name=name)
Exemple #11
0
def main():
    pmf_dice = thinkbayes.Pmf()
    pmf_dice.Set(Die(4), 5)
    pmf_dice.Set(Die(6), 4)
    pmf_dice.Set(Die(8), 3)
    pmf_dice.Set(Die(12), 2)
    pmf_dice.Set(Die(20), 1)
    pmf_dice.Normalize()

    mix = thinkbayes.Pmf()
    for die, weight in pmf_dice.Items():
        for outcome, prob in die.Items():
            mix.Incr(outcome, weight * prob)

    mix = thinkbayes.MakeMixture(pmf_dice)

    colors = thinkplot.Brewer.Colors()
    thinkplot.Hist(mix, width=0.9, color=colors[4])
    thinkplot.Save(root='dungeons3',
                   xlabel='Outcome',
                   ylabel='Probability',
                   formats=FORMATS)

    random.seed(17)

    d6 = Die(6, 'd6')

    dice = [d6] * 3
    three = thinkbayes.SampleSum(dice, 1000)
    three.name = 'sample'
    three.Print()

    three_exact = d6 + d6 + d6
    three_exact.name = 'exact'
    three_exact.Print()

    thinkplot.PrePlot(num=2)
    thinkplot.Pmf(three)
    thinkplot.Pmf(three_exact, linestyle='dashed')
    thinkplot.Save(root='dungeons1',
                   xlabel='Sum of three d6',
                   ylabel='Probability',
                   axis=[2, 19, 0, 0.15],
                   formats=FORMATS)

    thinkplot.Clf()
    thinkplot.PrePlot(num=1)

    # compute the distribution of the best attribute the hard way
    #  best_attr2 = PmfMax(three_exact, three_exact)
    #  best_attr4 = PmfMax(best_attr2, best_attr2)
    #  best_attr6 = PmfMax(best_attr4, best_attr2)
    # thinkplot.Pmf(best_attr6)

    # and the easy way
    best_attr_cdf = three_exact.Max(6)
    best_attr_cdf.name = ''
    best_attr_pmf = thinkbayes.MakePmfFromCdf(best_attr_cdf)
    best_attr_pmf.Print()

    thinkplot.Pmf(best_attr_pmf)
    thinkplot.Save(root='dungeons2',
                   xlabel='Sum of three d6',
                   ylabel='Probability',
                   axis=[2, 19, 0, 0.23],
                   formats=FORMATS)