Exemple #1
0
            def worker(channel):
                channel_mask = total_poly_energies == channel

                # Mask background events and current channel
                # poly_chan_mask = np.logical_and(poly_mask, channel_mask)
                # Select the masked events

                current_events = total_poly_events[channel_mask]

                polynomial, _ = unbinned_polyfit(
                    current_events,
                    self._optimal_polynomial_grade,
                    t_start,
                    t_stop,
                    poly_exposure,
                    bayes=bayes)

                return polynomial
Exemple #2
0
    def _unbinned_fit_global_and_determine_optimum_grade(self, events, exposure):
        """
        Provides the ability to find the optimum polynomial grade for *unbinned* events by fitting the
        total (all channels) to 0-4 order polynomials and then comparing them via a likelihood ratio test.


        :param events: an event list
        :param exposure: the exposure per event
        :return: polynomial grade
        """

        # Fit the sum of all the channels to determine the optimal polynomial
        # grade

        min_grade = 0
        max_grade = 4
        log_likelihoods = []

        t_start = self._poly_intervals.start_times
        t_stop = self._poly_intervals.stop_times

        for grade in range(min_grade, max_grade + 1):
            polynomial, log_like = unbinned_polyfit(events, grade, t_start, t_stop, exposure)

            log_likelihoods.append(log_like)

        # Found the best one
        delta_loglike = np.array([2 * (x[0] - x[1]) for x in zip(log_likelihoods[:-1], log_likelihoods[1:])])

        delta_threshold = 9.0

        mask = (delta_loglike >= delta_threshold)

        if (len(mask.nonzero()[0]) == 0):

            # best grade is zero!
            best_grade = 0

        else:

            best_grade = mask.nonzero()[0][-1] + 1

        return best_grade
Exemple #3
0
    def _unbinned_fit_global_and_determine_optimum_grade(self, events, exposure):
        """
        Provides the ability to find the optimum polynomial grade for *unbinned* events by fitting the
        total (all channels) to 0-4 order polynomials and then comparing them via a likelihood ratio test.


        :param events: an event list
        :param exposure: the exposure per event
        :return: polynomial grade
        """

        # Fit the sum of all the channels to determine the optimal polynomial
        # grade

        min_grade = 0
        max_grade = 4
        log_likelihoods = []

        t_start = self._poly_intervals.start_times
        t_stop = self._poly_intervals.stop_times

        for grade in range(min_grade, max_grade + 1):
            polynomial, log_like = unbinned_polyfit(events, grade, t_start, t_stop, exposure)

            log_likelihoods.append(log_like)

        # Found the best one
        delta_loglike = np.array(map(lambda x: 2 * (x[0] - x[1]), zip(log_likelihoods[:-1], log_likelihoods[1:])))

        delta_threshold = 9.0

        mask = (delta_loglike >= delta_threshold)

        if (len(mask.nonzero()[0]) == 0):

            # best grade is zero!
            best_grade = 0

        else:

            best_grade = mask.nonzero()[0][-1] + 1

        return best_grade
Exemple #4
0
    def _unbinned_fit_polynomials(self):

        self._poly_fit_exists = True

        # inform the type of fit we have
        self._fit_method_info['bin type'] = 'Unbinned'
        self._fit_method_info['fit method'] = threeML_config['event list'][
            'unbinned fit method']

        # Select all the events that are in the background regions
        # and make a mask

        all_bkg_masks = []

        total_duration = 0.

        poly_exposure = 0

        for selection in self._poly_intervals:
            total_duration += selection.duration

            poly_exposure += self.exposure_over_interval(
                selection.start_time, selection.stop_time)

            all_bkg_masks.append(
                np.logical_and(self._arrival_times >= selection.start_time,
                               self._arrival_times <= selection.stop_time))
        poly_mask = all_bkg_masks[0]

        # If there are multiple masks:
        if len(all_bkg_masks) > 1:
            for mask in all_bkg_masks[1:]:
                poly_mask = np.logical_or(poly_mask, mask)

        # Select the all the events in the poly selections
        # We only need to do this once

        total_poly_events = self._arrival_times[poly_mask]

        # For the channel energies we will need to down select again.
        # We can go ahead and do this to avoid repeated computations

        total_poly_energies = self._measurement[poly_mask]

        # Now we will find the the best poly order unless the use specified one
        # The total cnts (over channels) is binned to .1 sec intervals

        if self._user_poly_order == -1:

            self._optimal_polynomial_grade = self._unbinned_fit_global_and_determine_optimum_grade(
                total_poly_events, poly_exposure)
            if self._verbose:
                print("Auto-determined polynomial order: %d" %
                      self._optimal_polynomial_grade)
                print('\n')

        else:

            self._optimal_polynomial_grade = self._user_poly_order

        channels = range(self._first_channel,
                         self._n_channels + self._first_channel)

        # Check whether we are parallelizing or not

        t_start = self._poly_intervals.start_times
        t_stop = self._poly_intervals.stop_times

        polynomials = []

        with progress_bar(self._n_channels,
                          title="Fitting %s background" %
                          self._instrument) as p:
            for channel in channels:
                channel_mask = total_poly_energies == channel

                # Mask background events and current channel
                # poly_chan_mask = np.logical_and(poly_mask, channel_mask)
                # Select the masked events

                current_events = total_poly_events[channel_mask]

                polynomial, _ = unbinned_polyfit(
                    current_events, self._optimal_polynomial_grade, t_start,
                    t_stop, poly_exposure)

                polynomials.append(polynomial)
                p.increase()

        # We are now ready to return the polynomials

        self._polynomials = polynomials
    def _unbinned_fit_polynomials(self, bayes=False):

        self._poly_fit_exists = True

        # Select all the events that are in the background regions
        # and make a mask

        all_bkg_masks = []

        total_duration = 0.0

        poly_exposure = 0

        for selection in self._poly_intervals:
            total_duration += selection.duration

            poly_exposure += self.exposure_over_interval(
                selection.start_time, selection.stop_time)

            all_bkg_masks.append(
                np.logical_and(
                    self._arrival_times >= selection.start_time,
                    self._arrival_times <= selection.stop_time,
                ))
        poly_mask = all_bkg_masks[0]

        # If there are multiple masks:
        if len(all_bkg_masks) > 1:
            for mask in all_bkg_masks[1:]:
                poly_mask = np.logical_or(poly_mask, mask)

        # Select the all the events in the poly selections
        # We only need to do this once

        total_poly_events = self._arrival_times[poly_mask]

        # For the channel energies we will need to down select again.
        # We can go ahead and do this to avoid repeated computations

        total_poly_energies = self._measurement[poly_mask]

        # Now we will find the the best poly order unless the use specified one
        # The total cnts (over channels) is binned to .1 sec intervals

        if self._user_poly_order == -1:

            self._optimal_polynomial_grade = (
                self._unbinned_fit_global_and_determine_optimum_grade(
                    total_poly_events, poly_exposure, bayes=bayes))

            log.info("Auto-determined polynomial order: %d" %
                     self._optimal_polynomial_grade)

        else:

            self._optimal_polynomial_grade = self._user_poly_order

        channels = list(
            range(self._first_channel, self._n_channels + self._first_channel))

        # Check whether we are parallelizing or not

        t_start = self._poly_intervals.start_times
        t_stop = self._poly_intervals.stop_times

        if threeML_config["parallel"]["use_parallel"]:

            def worker(channel):
                channel_mask = total_poly_energies == channel

                # Mask background events and current channel
                # poly_chan_mask = np.logical_and(poly_mask, channel_mask)
                # Select the masked events

                current_events = total_poly_events[channel_mask]

                polynomial, _ = unbinned_polyfit(
                    current_events,
                    self._optimal_polynomial_grade,
                    t_start,
                    t_stop,
                    poly_exposure,
                    bayes=bayes)

                return polynomial

            client = ParallelClient()

            polynomials = client.execute_with_progress_bar(
                worker,
                channels,
                name=f"Fitting {self._instrument} background")

        else:

            polynomials = []

            for channel in tqdm(channels,
                                desc=f"Fitting {self._instrument} background"):
                channel_mask = total_poly_energies == channel

                # Mask background events and current channel
                # poly_chan_mask = np.logical_and(poly_mask, channel_mask)
                # Select the masked events

                current_events = total_poly_events[channel_mask]

                polynomial, _ = unbinned_polyfit(
                    current_events,
                    self._optimal_polynomial_grade,
                    t_start,
                    t_stop,
                    poly_exposure,
                    bayes=bayes)

                polynomials.append(polynomial)

        # We are now ready to return the polynomials

        self._polynomials = polynomials
Exemple #6
0
    def _unbinned_fit_global_and_determine_optimum_grade(
            self, events, exposure, bayes=False):
        """
        Provides the ability to find the optimum polynomial grade for *unbinned* events by fitting the
        total (all channels) to 0-2 order polynomials and then comparing them via a likelihood ratio test.


        :param events: an event list
        :param exposure: the exposure per event
        :return: polynomial grade
        """

        # Fit the sum of all the channels to determine the optimal polynomial
        # grade

        min_grade = 0
        max_grade = 2
        log_likelihoods = []

        t_start = self._poly_intervals.start_times
        t_stop = self._poly_intervals.stop_times

        log.debug("attempting to find best fit poly with unbinned")

        if threeML_config["parallel"]["use_parallel"]:

            def worker(grade):

                polynomial, log_like = unbinned_polyfit(events,
                                                        grade,
                                                        t_start,
                                                        t_stop,
                                                        exposure,
                                                        bayes=bayes)

                return log_like

            client = ParallelClient()

            log_likelihoods = client.execute_with_progress_bar(
                worker,
                list(range(min_grade, max_grade + 1)),
                name="Finding best polynomial Order")

        else:

            for grade in trange(min_grade,
                                max_grade + 1,
                                desc="Finding best polynomial Order"):
                polynomial, log_like = unbinned_polyfit(events,
                                                        grade,
                                                        t_start,
                                                        t_stop,
                                                        exposure,
                                                        bayes=bayes)

                log_likelihoods.append(log_like)

        # Found the best one
        delta_loglike = np.array([
            2 * (x[0] - x[1])
            for x in zip(log_likelihoods[:-1], log_likelihoods[1:])
        ])

        log.debug(f"log likes {log_likelihoods}")
        log.debug(f" delta loglikes {delta_loglike}")

        delta_threshold = 9.0

        mask = delta_loglike >= delta_threshold

        if len(mask.nonzero()[0]) == 0:

            # best grade is zero!
            best_grade = 0

        else:

            best_grade = mask.nonzero()[0][-1] + 1

        return best_grade