Exemple #1
0
def main(args):
    model_cls = models.get_model(args.model)

    # Import and override parameters
    # Priorities (low -> high):
    # default -> saved -> command
    params = default_params()
    params = merge_params(params, model_cls.default_params(args.hparam_set))
    params = import_params(args.output, args.model, params)
    params = override_params(params, args)

    # Initialize distributed utility
    if args.distributed:
        dist.init_process_group("nccl")
        torch.cuda.set_device(args.local_rank)
        torch.set_default_tensor_type(torch.cuda.FloatTensor)
    else:
        dist.init_process_group("nccl",
                                init_method=args.url,
                                rank=args.local_rank,
                                world_size=len(params.device_list))
        torch.cuda.set_device(params.device_list[args.local_rank])
        torch.set_default_tensor_type(torch.cuda.FloatTensor)

    # Export parameters
    if dist.get_rank() == 0:
        export_params(params.output, "params.json", params)
        export_params(params.output, "%s.json" % params.model,
                      collect_params(params, model_cls.default_params()))

    model = model_cls(params).cuda()

    if args.half:
        model = model.half()
        torch.set_default_dtype(torch.half)
        torch.set_default_tensor_type(torch.cuda.HalfTensor)

    model.train()

    # Init tensorboard
    summary.init(params.output, params.save_summary)

    schedule = get_learning_rate_schedule(params)
    clipper = get_clipper(params)
    optimizer = get_optimizer(params, schedule, clipper)

    if args.half:
        optimizer = optimizers.LossScalingOptimizer(optimizer)

    optimizer = optimizers.MultiStepOptimizer(optimizer, params.update_cycle)

    trainable_flags = print_variables(model, params.pattern,
                                      dist.get_rank() == 0)

    dataset = data.get_dataset(params.input, "train", params)

    if params.validation:
        sorted_key, eval_dataset = data.get_dataset(params.validation, "infer",
                                                    params)
        references = load_references(params.references)
    else:
        sorted_key = None
        eval_dataset = None
        references = None

    # Load checkpoint
    checkpoint = utils.latest_checkpoint(params.output)

    if args.checkpoint is not None:
        # Load pre-trained models
        state = torch.load(args.checkpoint, map_location="cpu")
        model.load_state_dict(state["model"])
        step = params.initial_step
        epoch = 0
        broadcast(model)
    elif checkpoint is not None:
        state = torch.load(checkpoint, map_location="cpu")
        step = state["step"]
        epoch = state["epoch"]
        model.load_state_dict(state["model"])

        if "optimizer" in state:
            optimizer.load_state_dict(state["optimizer"])
    else:
        step = 0
        epoch = 0
        broadcast(model)

    def train_fn(inputs):
        features, labels = inputs
        loss = model(features, labels)
        return loss

    counter = 0

    while True:
        for features in dataset:
            if counter % params.update_cycle == 0:
                step += 1
                utils.set_global_step(step)

            counter += 1
            t = time.time()
            features = data.lookup(features, "train", params)
            loss = train_fn(features)
            gradients = optimizer.compute_gradients(loss,
                                                    list(model.parameters()))
            grads_and_vars = exclude_variables(
                trainable_flags, zip(gradients,
                                     list(model.named_parameters())))
            optimizer.apply_gradients(grads_and_vars)

            t = time.time() - t

            summary.scalar("loss", loss, step, write_every_n_steps=1)
            summary.scalar("global_step/sec", t, step)

            print("epoch = %d, step = %d, loss = %.3f (%.3f sec)" %
                  (epoch + 1, step, float(loss), t))

            if counter % params.update_cycle == 0:
                if step >= params.train_steps:
                    utils.evaluate(model, sorted_key, eval_dataset,
                                   params.output, references, params)
                    save_checkpoint(step, epoch, model, optimizer, params)

                    if dist.get_rank() == 0:
                        summary.close()

                    return

                if step % params.eval_steps == 0:
                    utils.evaluate(model, sorted_key, eval_dataset,
                                   params.output, references, params)

                if step % params.save_checkpoint_steps == 0:
                    save_checkpoint(step, epoch, model, optimizer, params)

        epoch += 1
Exemple #2
0
def main(args):
    model_cls = models.get_model(args.model)

    # Import and override parameters
    # Priorities (low -> high):
    # default -> saved -> command
    params = default_params()
    params = merge_params(params, model_cls.default_params(args.hparam_set))
    params = import_params(args.output, args.model, params)
    params = override_params(params, args)

    # Initialize distributed utility
    if args.distributed:
        dist.init_process_group("nccl")
        torch.cuda.set_device(args.local_rank)
        torch.set_default_tensor_type(torch.cuda.FloatTensor)
    else:
        dist.init_process_group("nccl",
                                init_method=args.url,
                                rank=args.local_rank,
                                world_size=len(params.device_list))
        torch.cuda.set_device(params.device_list[args.local_rank])
        torch.set_default_tensor_type(torch.cuda.FloatTensor)

    # Export parameters
    if dist.get_rank() == 0:
        export_params(params.output, "params.json", params)
        export_params(params.output, "%s.json" % params.model,
                      collect_params(params, model_cls.default_params()))

    model = model_cls(params).cuda()

    if args.half:
        model = model.half()
        torch.set_default_dtype(torch.half)
        torch.set_default_tensor_type(torch.cuda.HalfTensor)

    model.train()

    # Init tensorboard
    summary.init(params.output, params.save_summary)

    schedule = get_learning_rate_schedule(params)
    clipper = get_clipper(params)

    if params.optimizer.lower() == "adam":
        optimizer = optimizers.AdamOptimizer(learning_rate=schedule,
                                             beta_1=params.adam_beta1,
                                             beta_2=params.adam_beta2,
                                             epsilon=params.adam_epsilon,
                                             clipper=clipper,
                                             summaries=params.save_summary)
    elif params.optimizer.lower() == "adadelta":
        optimizer = optimizers.AdadeltaOptimizer(
            learning_rate=schedule,
            rho=params.adadelta_rho,
            epsilon=params.adadelta_epsilon,
            clipper=clipper,
            summaries=params.save_summary)
    elif params.optimizer.lower() == "sgd":
        optimizer = optimizers.SGDOptimizer(learning_rate=schedule,
                                            clipper=clipper,
                                            summaries=params.save_summary)
    else:
        raise ValueError("Unknown optimizer %s" % params.optimizer)

    if args.half:
        optimizer = optimizers.LossScalingOptimizer(optimizer)

    optimizer = optimizers.MultiStepOptimizer(optimizer, params.update_cycle)

    if dist.get_rank() == 0:
        print_variables(model)

    if params.from_torchtext:
        dataset = data.get_dataset_torchtext(params.input, "train", params)
    else:
        dataset = data.get_dataset(params.input, "train", params)

    if params.validation:
        if params.from_torchtext:
            eval_dataset = data.get_dataset_torchtext(params.validation,
                                                      "infer", params)
        else:
            eval_dataset = data.get_dataset(params.validation, "infer", params)
        references = load_references(params.references)
    else:
        eval_dataset = None
        references = None

    # Load checkpoint
    checkpoint = utils.latest_checkpoint(params.output)

    if args.checkpoint is not None:
        # Load pre-trained models
        state = torch.load(args.checkpoint, map_location="cpu")
        model.load_state_dict(state["model"], strict=False)
        step = params.initial_step
        epoch = 0
        broadcast(model)
    elif checkpoint is not None:
        state = torch.load(checkpoint, map_location="cpu")
        step = state["step"]
        epoch = state["epoch"]
        model.load_state_dict(state["model"])

        if "optimizer" in state:
            optimizer.load_state_dict(state["optimizer"])
    else:
        step = 0
        epoch = 0
        broadcast(model)

    def train_fn(inputs):
        features, labels = inputs
        loss, state = model(features, labels)
        return loss, state

    counter = 0
    state = None
    if params.model == "cachedtransformer":
        last_feature = None

    while True:
        start_time = time.time()

        for features in dataset:
            if counter % params.update_cycle == 0:
                step += 1
                utils.set_global_step(step)

            counter += 1
            t = time.time()
            features = data.lookup(features,
                                   "train",
                                   params,
                                   from_torchtext=params.from_torchtext)
            if model.name == "cachedtransformer":
                features = utils.update_cache(model, features, state,
                                              last_feature)
                last_feature = features[0]
            loss, state = train_fn(features)
            gradients = optimizer.compute_gradients(loss,
                                                    list(model.parameters()))
            grads_and_vars = optimizers.exclude_variables(
                params.pattern, zip(gradients, list(model.named_parameters())))
            optimizer.apply_gradients(grads_and_vars)

            t = time.time() - t

            summary.scalar("loss", loss, step, write_every_n_steps=1)
            summary.scalar("global_step/sec", t, step)

            if counter % params.update_cycle == 0:
                if step > 0 and step % args.log_interval == 0:
                    elapsed = time.time() - start_time
                    print('| epoch {:2d} | step {:8d} | lr {:02.2e} | '
                          'ms/step {:4.0f} | loss {:8.4f} '.format(
                              epoch + 1, step,
                              optimizer._optimizer._learning_rate(step),
                              elapsed * 1000 / args.log_interval, loss.item()))
                    start_time = time.time()

                if step >= params.train_steps:
                    utils.evaluate(model, eval_dataset, params.output,
                                   references, params)
                    save_checkpoint(step, epoch, model, optimizer, params)

                    if dist.get_rank() == 0:
                        summary.close()

                    return

                if step % params.eval_steps == 0:
                    utils.evaluate(model, eval_dataset, params.output,
                                   references, params)
                    start_time = time.time()

                if step % params.save_checkpoint_steps == 0:
                    save_checkpoint(step, epoch, model, optimizer, params)
                    start_time = time.time()

        epoch += 1