Exemple #1
0
 def _compute_returns(self, batch: Batch, buffer: ReplayBuffer,
                      indice: np.ndarray) -> Batch:
     v_s, v_s_ = [], []
     with torch.no_grad():
         for b in batch.split(self._batch, shuffle=False, merge_last=True):
             v_s.append(self.critic(b.obs))
             v_s_.append(self.critic(b.obs_next))
     batch.v_s = torch.cat(v_s, dim=0).flatten()  # old value
     v_s = batch.v_s.cpu().numpy()
     v_s_ = torch.cat(v_s_, dim=0).flatten().cpu().numpy()
     # when normalizing values, we do not minus self.ret_rms.mean to be numerically
     # consistent with OPENAI baselines' value normalization pipeline. Emperical
     # study also shows that "minus mean" will harm performances a tiny little bit
     # due to unknown reasons (on Mujoco envs, not confident, though).
     if self._rew_norm:  # unnormalize v_s & v_s_
         v_s = v_s * np.sqrt(self.ret_rms.var + self._eps)
         v_s_ = v_s_ * np.sqrt(self.ret_rms.var + self._eps)
     unnormalized_returns, advantages = self.compute_episodic_return(
         batch,
         buffer,
         indice,
         v_s_,
         v_s,
         gamma=self._gamma,
         gae_lambda=self._lambda)
     if self._rew_norm:
         batch.returns = unnormalized_returns / \
             np.sqrt(self.ret_rms.var + self._eps)
         self.ret_rms.update(unnormalized_returns)
     else:
         batch.returns = unnormalized_returns
     batch.returns = to_torch_as(batch.returns, batch.v_s)
     batch.adv = to_torch_as(advantages, batch.v_s)
     return batch
Exemple #2
0
 def process_fn(
     self, batch: Batch, buffer: ReplayBuffer, indice: np.ndarray
 ) -> Batch:
     v_s, v_s_, old_log_prob = [], [], []
     with torch.no_grad():
         for b in batch.split(self._batch, shuffle=False, merge_last=True):
             v_s.append(self.critic(b.obs))
             v_s_.append(self.critic(b.obs_next))
             old_log_prob.append(self(b).dist.log_prob(to_torch_as(b.act, v_s[0])))
     batch.v_s = torch.cat(v_s, dim=0).flatten()  # old value
     v_s = to_numpy(batch.v_s)
     v_s_ = to_numpy(torch.cat(v_s_, dim=0).flatten())
     if self._rew_norm:  # unnormalize v_s & v_s_
         v_s = v_s * np.sqrt(self.ret_rms.var + self._eps) + self.ret_rms.mean
         v_s_ = v_s_ * np.sqrt(self.ret_rms.var + self._eps) + self.ret_rms.mean
     unnormalized_returns, advantages = self.compute_episodic_return(
         batch, buffer, indice, v_s_, v_s,
         gamma=self._gamma, gae_lambda=self._lambda)
     if self._rew_norm:
         batch.returns = (unnormalized_returns - self.ret_rms.mean) / \
             np.sqrt(self.ret_rms.var + self._eps)
         self.ret_rms.update(unnormalized_returns)
         mean, std = np.mean(advantages), np.std(advantages)
         advantages = (advantages - mean) / std  # per-batch norm
     else:
         batch.returns = unnormalized_returns
     batch.act = to_torch_as(batch.act, batch.v_s)
     batch.logp_old = torch.cat(old_log_prob, dim=0)
     batch.returns = to_torch_as(batch.returns, batch.v_s)
     batch.adv = to_torch_as(advantages, batch.v_s)
     return batch