Exemple #1
0
def test_c51(args=get_args()):
    env = gym.make(args.task)
    args.state_shape = env.observation_space.shape or env.observation_space.n
    args.action_shape = env.action_space.shape or env.action_space.n
    # train_envs = gym.make(args.task)
    # you can also use tianshou.env.SubprocVectorEnv
    train_envs = DummyVectorEnv(
        [lambda: gym.make(args.task) for _ in range(args.training_num)]
    )
    # test_envs = gym.make(args.task)
    test_envs = DummyVectorEnv(
        [lambda: gym.make(args.task) for _ in range(args.test_num)]
    )
    # seed
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    train_envs.seed(args.seed)
    test_envs.seed(args.seed)
    # model
    net = Net(
        args.state_shape,
        args.action_shape,
        hidden_sizes=args.hidden_sizes,
        device=args.device,
        softmax=True,
        num_atoms=args.num_atoms
    )
    optim = torch.optim.Adam(net.parameters(), lr=args.lr)
    policy = C51Policy(
        net,
        optim,
        args.gamma,
        args.num_atoms,
        args.v_min,
        args.v_max,
        args.n_step,
        target_update_freq=args.target_update_freq
    ).to(args.device)
    # buffer
    if args.prioritized_replay:
        buf = PrioritizedVectorReplayBuffer(
            args.buffer_size,
            buffer_num=len(train_envs),
            alpha=args.alpha,
            beta=args.beta
        )
    else:
        buf = VectorReplayBuffer(args.buffer_size, buffer_num=len(train_envs))
    # collector
    train_collector = Collector(policy, train_envs, buf, exploration_noise=True)
    test_collector = Collector(policy, test_envs, exploration_noise=True)
    # policy.set_eps(1)
    train_collector.collect(n_step=args.batch_size * args.training_num)
    # log
    log_path = os.path.join(args.logdir, args.task, 'c51')
    writer = SummaryWriter(log_path)
    logger = TensorboardLogger(writer, save_interval=args.save_interval)

    def save_fn(policy):
        torch.save(policy.state_dict(), os.path.join(log_path, 'policy.pth'))

    def stop_fn(mean_rewards):
        return mean_rewards >= env.spec.reward_threshold

    def train_fn(epoch, env_step):
        # eps annnealing, just a demo
        if env_step <= 10000:
            policy.set_eps(args.eps_train)
        elif env_step <= 50000:
            eps = args.eps_train - (env_step - 10000) / \
                40000 * (0.9 * args.eps_train)
            policy.set_eps(eps)
        else:
            policy.set_eps(0.1 * args.eps_train)

    def test_fn(epoch, env_step):
        policy.set_eps(args.eps_test)

    def save_checkpoint_fn(epoch, env_step, gradient_step):
        # see also: https://pytorch.org/tutorials/beginner/saving_loading_models.html
        torch.save(
            {
                'model': policy.state_dict(),
                'optim': optim.state_dict(),
            }, os.path.join(log_path, 'checkpoint.pth')
        )
        pickle.dump(
            train_collector.buffer,
            open(os.path.join(log_path, 'train_buffer.pkl'), "wb")
        )

    if args.resume:
        # load from existing checkpoint
        print(f"Loading agent under {log_path}")
        ckpt_path = os.path.join(log_path, 'checkpoint.pth')
        if os.path.exists(ckpt_path):
            checkpoint = torch.load(ckpt_path, map_location=args.device)
            policy.load_state_dict(checkpoint['model'])
            policy.optim.load_state_dict(checkpoint['optim'])
            print("Successfully restore policy and optim.")
        else:
            print("Fail to restore policy and optim.")
        buffer_path = os.path.join(log_path, 'train_buffer.pkl')
        if os.path.exists(buffer_path):
            train_collector.buffer = pickle.load(open(buffer_path, "rb"))
            print("Successfully restore buffer.")
        else:
            print("Fail to restore buffer.")

    # trainer
    result = offpolicy_trainer(
        policy,
        train_collector,
        test_collector,
        args.epoch,
        args.step_per_epoch,
        args.step_per_collect,
        args.test_num,
        args.batch_size,
        update_per_step=args.update_per_step,
        train_fn=train_fn,
        test_fn=test_fn,
        stop_fn=stop_fn,
        save_fn=save_fn,
        logger=logger,
        resume_from_log=args.resume,
        save_checkpoint_fn=save_checkpoint_fn
    )
    assert stop_fn(result['best_reward'])

    if __name__ == '__main__':
        pprint.pprint(result)
        # Let's watch its performance!
        env = gym.make(args.task)
        policy.eval()
        policy.set_eps(args.eps_test)
        collector = Collector(policy, env)
        result = collector.collect(n_episode=1, render=args.render)
        rews, lens = result["rews"], result["lens"]
        print(f"Final reward: {rews.mean()}, length: {lens.mean()}")
Exemple #2
0
def test_dqn(args=get_args()):
    env = make_atari_env(args)
    args.state_shape = env.observation_space.shape or env.observation_space.n
    args.action_shape = env.env.action_space.shape or env.env.action_space.n

    # should be N_FRAMES x H x W

    print("Observations shape: ", args.state_shape)
    print("Actions shape: ", args.action_shape)
    # make environments
    train_envs = SubprocVectorEnv(
        [lambda: make_atari_env(args) for _ in range(args.training_num)])
    test_envs = SubprocVectorEnv(
        [lambda: make_atari_env_watch(args) for _ in range(args.test_num)])
    # seed
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    train_envs.seed(args.seed)
    test_envs.seed(args.seed)
    # log
    log_path = os.path.join(args.logdir, args.task, 'embedding')
    embedding_writer = SummaryWriter(log_path + '/with_init')

    embedding_net = embedding_prediction.Prediction(
        *args.state_shape, args.action_shape,
        args.device).to(device=args.device)
    embedding_net.apply(embedding_prediction.weights_init)

    if args.embedding_path:
        embedding_net.load_state_dict(torch.load(log_path + '/embedding.pth'))
        print("Loaded agent from: ", log_path + '/embedding.pth')
    # numel_list = [p.numel() for p in embedding_net.parameters()]
    # print(sum(numel_list), numel_list)

    pre_buffer = ReplayBuffer(args.buffer_size,
                              save_only_last_obs=True,
                              stack_num=args.frames_stack)
    pre_test_buffer = ReplayBuffer(args.buffer_size // 100,
                                   save_only_last_obs=True,
                                   stack_num=args.frames_stack)

    train_collector = Collector(None, train_envs, pre_buffer)
    test_collector = Collector(None, test_envs, pre_test_buffer)
    if args.embedding_data_path:
        pre_buffer = pickle.load(open(log_path + '/train_data.pkl', 'rb'))
        pre_test_buffer = pickle.load(open(log_path + '/test_data.pkl', 'rb'))
        train_collector.buffer = pre_buffer
        test_collector.buffer = pre_test_buffer
        print('load success')
    else:
        print('collect start')
        train_collector = Collector(None, train_envs, pre_buffer)
        test_collector = Collector(None, test_envs, pre_test_buffer)
        train_collector.collect(n_step=args.buffer_size, random=True)
        test_collector.collect(n_step=args.buffer_size // 100, random=True)
        print(len(train_collector.buffer))
        print(len(test_collector.buffer))
        if not os.path.exists(log_path):
            os.makedirs(log_path)
        pickle.dump(pre_buffer, open(log_path + '/train_data.pkl', 'wb'))
        pickle.dump(pre_test_buffer, open(log_path + '/test_data.pkl', 'wb'))
        print('collect finish')

    #使用得到的数据训练编码网络
    def part_loss(x, device='cpu'):
        if not isinstance(x, torch.Tensor):
            x = torch.tensor(x, device=device, dtype=torch.float32)
        x = x.view(128, -1)
        temp = torch.cat(
            ((1 - x).pow(2.0).unsqueeze_(0), x.pow(2.0).unsqueeze_(0)), dim=0)
        temp_2 = torch.min(temp, dim=0)[0]
        return torch.sum(temp_2)

    pre_optim = torch.optim.Adam(embedding_net.parameters(), lr=1e-5)
    scheduler = torch.optim.lr_scheduler.StepLR(pre_optim,
                                                step_size=50000,
                                                gamma=0.1,
                                                last_epoch=-1)
    test_batch_data = test_collector.sample(batch_size=0)

    loss_fn = torch.nn.NLLLoss()
    # train_loss = []
    for epoch in range(1, 100001):
        embedding_net.train()
        batch_data = train_collector.sample(batch_size=128)
        # print(batch_data)
        # print(batch_data['obs'][0] == batch_data['obs'][1])
        pred = embedding_net(batch_data['obs'], batch_data['obs_next'])
        x1 = pred[1]
        x2 = pred[2]
        # print(torch.argmax(pred[0], dim=1))
        if not isinstance(batch_data['act'], torch.Tensor):
            act = torch.tensor(batch_data['act'],
                               device=args.device,
                               dtype=torch.int64)
        # print(pred[0].dtype)
        # print(act.dtype)
        # l2_norm = sum(p.pow(2.0).sum() for p in embedding_net.net.parameters())
        # loss = loss_fn(pred[0], act) + 0.001 * (part_loss(x1) + part_loss(x2)) / 64
        loss_1 = loss_fn(pred[0], act)
        loss_2 = 0.01 * (part_loss(x1, args.device) +
                         part_loss(x2, args.device)) / 128
        loss = loss_1 + loss_2
        # print(loss_1)
        # print(loss_2)
        embedding_writer.add_scalar('training loss1', loss_1.item(), epoch)
        embedding_writer.add_scalar('training loss2', loss_2, epoch)
        embedding_writer.add_scalar('training loss', loss.item(), epoch)
        # train_loss.append(loss.detach().item())
        pre_optim.zero_grad()
        loss.backward()
        pre_optim.step()
        scheduler.step()

        if epoch % 10000 == 0 or epoch == 1:
            print(pre_optim.state_dict()['param_groups'][0]['lr'])
            # print("Epoch: %d,Train: Loss: %f" % (epoch, float(loss.item())))
            correct = 0
            numel_list = [p for p in embedding_net.parameters()][-2]
            print(numel_list)
            embedding_net.eval()
            with torch.no_grad():
                test_pred, x1, x2, _ = embedding_net(
                    test_batch_data['obs'], test_batch_data['obs_next'])
                if not isinstance(test_batch_data['act'], torch.Tensor):
                    act = torch.tensor(test_batch_data['act'],
                                       device=args.device,
                                       dtype=torch.int64)
                loss_1 = loss_fn(test_pred, act)
                loss_2 = 0.01 * (part_loss(x1, args.device) +
                                 part_loss(x2, args.device)) / 128
                loss = loss_1 + loss_2
                embedding_writer.add_scalar('test loss', loss.item(), epoch)
                # print("Test Loss: %f" % (float(loss)))
                print(torch.argmax(test_pred, dim=1))
                print(act)
                correct += int((torch.argmax(test_pred, dim=1) == act).sum())
                print('Acc:', correct / len(test_batch_data))

    torch.save(embedding_net.state_dict(),
               os.path.join(log_path, 'embedding.pth'))
    embedding_writer.close()
    # plt.figure()
    # plt.plot(np.arange(100000),train_loss)
    # plt.show()
    exit()
    #构建hash表

    # log
    log_path = os.path.join(args.logdir, args.task, 'dqn')
    writer = SummaryWriter(log_path)

    # define model
    net = DQN(*args.state_shape, args.action_shape,
              args.device).to(device=args.device)

    optim = torch.optim.Adam(net.parameters(), lr=args.lr)
    # define policy
    policy = DQNPolicy(net,
                       optim,
                       args.gamma,
                       args.n_step,
                       target_update_freq=args.target_update_freq)
    # load a previous policy
    if args.resume_path:
        policy.load_state_dict(torch.load(args.resume_path))
        print("Loaded agent from: ", args.resume_path)

    # replay buffer: `save_last_obs` and `stack_num` can be removed together
    # when you have enough RAM
    pre_buffer.reset()
    buffer = ReplayBuffer(args.buffer_size,
                          ignore_obs_next=True,
                          save_only_last_obs=True,
                          stack_num=args.frames_stack)
    # collector
    # train_collector中传入preprocess_fn对奖励进行重构
    train_collector = Collector(policy, train_envs, buffer)
    test_collector = Collector(policy, test_envs)

    def save_fn(policy):
        torch.save(policy.state_dict(), os.path.join(log_path, 'policy.pth'))

    def stop_fn(x):
        if env.env.spec.reward_threshold:
            return x >= env.spec.reward_threshold
        elif 'Pong' in args.task:
            return x >= 20

    def train_fn(x):
        # nature DQN setting, linear decay in the first 1M steps
        now = x * args.collect_per_step * args.step_per_epoch
        if now <= 1e6:
            eps = args.eps_train - now / 1e6 * \
                (args.eps_train - args.eps_train_final)
            policy.set_eps(eps)
        else:
            policy.set_eps(args.eps_train_final)
        print("set eps =", policy.eps)

    def test_fn(x):
        policy.set_eps(args.eps_test)

    # watch agent's performance
    def watch():
        print("Testing agent ...")
        policy.eval()
        policy.set_eps(args.eps_test)
        test_envs.seed(args.seed)
        test_collector.reset()
        result = test_collector.collect(n_episode=[1] * args.test_num,
                                        render=1 / 30)
        pprint.pprint(result)

    if args.watch:
        watch()
        exit(0)

    # test train_collector and start filling replay buffer
    train_collector.collect(n_step=args.batch_size * 4)
    # trainer
    result = offpolicy_trainer(policy,
                               train_collector,
                               test_collector,
                               args.epoch,
                               args.step_per_epoch,
                               args.collect_per_step,
                               args.test_num,
                               args.batch_size,
                               train_fn=train_fn,
                               test_fn=test_fn,
                               stop_fn=stop_fn,
                               save_fn=save_fn,
                               writer=writer,
                               test_in_train=False)

    pprint.pprint(result)
    watch()