def test_c51(args=get_args()): env = gym.make(args.task) args.state_shape = env.observation_space.shape or env.observation_space.n args.action_shape = env.action_space.shape or env.action_space.n # train_envs = gym.make(args.task) # you can also use tianshou.env.SubprocVectorEnv train_envs = DummyVectorEnv( [lambda: gym.make(args.task) for _ in range(args.training_num)] ) # test_envs = gym.make(args.task) test_envs = DummyVectorEnv( [lambda: gym.make(args.task) for _ in range(args.test_num)] ) # seed np.random.seed(args.seed) torch.manual_seed(args.seed) train_envs.seed(args.seed) test_envs.seed(args.seed) # model net = Net( args.state_shape, args.action_shape, hidden_sizes=args.hidden_sizes, device=args.device, softmax=True, num_atoms=args.num_atoms ) optim = torch.optim.Adam(net.parameters(), lr=args.lr) policy = C51Policy( net, optim, args.gamma, args.num_atoms, args.v_min, args.v_max, args.n_step, target_update_freq=args.target_update_freq ).to(args.device) # buffer if args.prioritized_replay: buf = PrioritizedVectorReplayBuffer( args.buffer_size, buffer_num=len(train_envs), alpha=args.alpha, beta=args.beta ) else: buf = VectorReplayBuffer(args.buffer_size, buffer_num=len(train_envs)) # collector train_collector = Collector(policy, train_envs, buf, exploration_noise=True) test_collector = Collector(policy, test_envs, exploration_noise=True) # policy.set_eps(1) train_collector.collect(n_step=args.batch_size * args.training_num) # log log_path = os.path.join(args.logdir, args.task, 'c51') writer = SummaryWriter(log_path) logger = TensorboardLogger(writer, save_interval=args.save_interval) def save_fn(policy): torch.save(policy.state_dict(), os.path.join(log_path, 'policy.pth')) def stop_fn(mean_rewards): return mean_rewards >= env.spec.reward_threshold def train_fn(epoch, env_step): # eps annnealing, just a demo if env_step <= 10000: policy.set_eps(args.eps_train) elif env_step <= 50000: eps = args.eps_train - (env_step - 10000) / \ 40000 * (0.9 * args.eps_train) policy.set_eps(eps) else: policy.set_eps(0.1 * args.eps_train) def test_fn(epoch, env_step): policy.set_eps(args.eps_test) def save_checkpoint_fn(epoch, env_step, gradient_step): # see also: https://pytorch.org/tutorials/beginner/saving_loading_models.html torch.save( { 'model': policy.state_dict(), 'optim': optim.state_dict(), }, os.path.join(log_path, 'checkpoint.pth') ) pickle.dump( train_collector.buffer, open(os.path.join(log_path, 'train_buffer.pkl'), "wb") ) if args.resume: # load from existing checkpoint print(f"Loading agent under {log_path}") ckpt_path = os.path.join(log_path, 'checkpoint.pth') if os.path.exists(ckpt_path): checkpoint = torch.load(ckpt_path, map_location=args.device) policy.load_state_dict(checkpoint['model']) policy.optim.load_state_dict(checkpoint['optim']) print("Successfully restore policy and optim.") else: print("Fail to restore policy and optim.") buffer_path = os.path.join(log_path, 'train_buffer.pkl') if os.path.exists(buffer_path): train_collector.buffer = pickle.load(open(buffer_path, "rb")) print("Successfully restore buffer.") else: print("Fail to restore buffer.") # trainer result = offpolicy_trainer( policy, train_collector, test_collector, args.epoch, args.step_per_epoch, args.step_per_collect, args.test_num, args.batch_size, update_per_step=args.update_per_step, train_fn=train_fn, test_fn=test_fn, stop_fn=stop_fn, save_fn=save_fn, logger=logger, resume_from_log=args.resume, save_checkpoint_fn=save_checkpoint_fn ) assert stop_fn(result['best_reward']) if __name__ == '__main__': pprint.pprint(result) # Let's watch its performance! env = gym.make(args.task) policy.eval() policy.set_eps(args.eps_test) collector = Collector(policy, env) result = collector.collect(n_episode=1, render=args.render) rews, lens = result["rews"], result["lens"] print(f"Final reward: {rews.mean()}, length: {lens.mean()}")
def test_c51(args=get_args()): env = gym.make(args.task) args.state_shape = env.observation_space.shape or env.observation_space.n args.action_shape = env.action_space.shape or env.action_space.n # train_envs = gym.make(args.task) # you can also use tianshou.env.SubprocVectorEnv train_envs = DummyVectorEnv( [lambda: gym.make(args.task) for _ in range(args.training_num)]) # test_envs = gym.make(args.task) test_envs = DummyVectorEnv( [lambda: gym.make(args.task) for _ in range(args.test_num)]) # seed np.random.seed(args.seed) torch.manual_seed(args.seed) train_envs.seed(args.seed) test_envs.seed(args.seed) # model net = Net(args.state_shape, args.action_shape, hidden_sizes=args.hidden_sizes, device=args.device, softmax=True, num_atoms=args.num_atoms) optim = torch.optim.Adam(net.parameters(), lr=args.lr) policy = C51Policy( net, optim, args.gamma, args.num_atoms, args.v_min, args.v_max, args.n_step, target_update_freq=args.target_update_freq ).to(args.device) # buffer if args.prioritized_replay: buf = PrioritizedReplayBuffer( args.buffer_size, alpha=args.alpha, beta=args.beta) else: buf = ReplayBuffer(args.buffer_size) # collector train_collector = Collector(policy, train_envs, buf) test_collector = Collector(policy, test_envs) # policy.set_eps(1) train_collector.collect(n_step=args.batch_size) # log log_path = os.path.join(args.logdir, args.task, 'c51') writer = SummaryWriter(log_path) def save_fn(policy): torch.save(policy.state_dict(), os.path.join(log_path, 'policy.pth')) def stop_fn(mean_rewards): return mean_rewards >= env.spec.reward_threshold def train_fn(epoch, env_step): # eps annnealing, just a demo if env_step <= 10000: policy.set_eps(args.eps_train) elif env_step <= 50000: eps = args.eps_train - (env_step - 10000) / \ 40000 * (0.9 * args.eps_train) policy.set_eps(eps) else: policy.set_eps(0.1 * args.eps_train) def test_fn(epoch, env_step): policy.set_eps(args.eps_test) # trainer result = offpolicy_trainer( policy, train_collector, test_collector, args.epoch, args.step_per_epoch, args.collect_per_step, args.test_num, args.batch_size, train_fn=train_fn, test_fn=test_fn, stop_fn=stop_fn, save_fn=save_fn, writer=writer) assert stop_fn(result['best_reward']) if __name__ == '__main__': pprint.pprint(result) # Let's watch its performance! env = gym.make(args.task) policy.eval() policy.set_eps(args.eps_test) collector = Collector(policy, env) result = collector.collect(n_episode=1, render=args.render) print(f'Final reward: {result["rew"]}, length: {result["len"]}')
def test_c51(args=get_args()): env = make_atari_env(args) args.state_shape = env.observation_space.shape or env.observation_space.n args.action_shape = env.env.action_space.shape or env.env.action_space.n # should be N_FRAMES x H x W print("Observations shape:", args.state_shape) print("Actions shape:", args.action_shape) # make environments train_envs = SubprocVectorEnv( [lambda: make_atari_env(args) for _ in range(args.training_num)]) test_envs = SubprocVectorEnv( [lambda: make_atari_env_watch(args) for _ in range(args.test_num)]) # seed np.random.seed(args.seed) torch.manual_seed(args.seed) train_envs.seed(args.seed) test_envs.seed(args.seed) # define model net = C51(*args.state_shape, args.action_shape, args.num_atoms, args.device) optim = torch.optim.Adam(net.parameters(), lr=args.lr) # define policy policy = C51Policy(net, optim, args.gamma, args.num_atoms, args.v_min, args.v_max, args.n_step, target_update_freq=args.target_update_freq).to( args.device) # load a previous policy if args.resume_path: policy.load_state_dict( torch.load(args.resume_path, map_location=args.device)) print("Loaded agent from: ", args.resume_path) # replay buffer: `save_last_obs` and `stack_num` can be removed together # when you have enough RAM buffer = ReplayBuffer(args.buffer_size, ignore_obs_next=True, save_only_last_obs=True, stack_num=args.frames_stack) # collector train_collector = Collector(policy, train_envs, buffer) test_collector = Collector(policy, test_envs) # log log_path = os.path.join(args.logdir, args.task, 'c51') writer = SummaryWriter(log_path) def save_fn(policy): torch.save(policy.state_dict(), os.path.join(log_path, 'policy.pth')) def stop_fn(mean_rewards): if env.env.spec.reward_threshold: return mean_rewards >= env.spec.reward_threshold elif 'Pong' in args.task: return mean_rewards >= 20 else: return False def train_fn(epoch, env_step): # nature DQN setting, linear decay in the first 1M steps if env_step <= 1e6: eps = args.eps_train - env_step / 1e6 * \ (args.eps_train - args.eps_train_final) else: eps = args.eps_train_final policy.set_eps(eps) writer.add_scalar('train/eps', eps, global_step=env_step) def test_fn(epoch, env_step): policy.set_eps(args.eps_test) # watch agent's performance def watch(): print("Testing agent ...") policy.eval() policy.set_eps(args.eps_test) test_envs.seed(args.seed) test_collector.reset() result = test_collector.collect(n_episode=[1] * args.test_num, render=args.render) pprint.pprint(result) if args.watch: watch() exit(0) # test train_collector and start filling replay buffer train_collector.collect(n_step=args.batch_size * 4) # trainer result = offpolicy_trainer(policy, train_collector, test_collector, args.epoch, args.step_per_epoch, args.collect_per_step, args.test_num, args.batch_size, train_fn=train_fn, test_fn=test_fn, stop_fn=stop_fn, save_fn=save_fn, writer=writer, test_in_train=False) pprint.pprint(result) watch()
def test_c51(args=get_args()): args.cfg_path = f"maps/{args.task}.cfg" args.wad_path = f"maps/{args.task}.wad" args.res = (args.skip_num, 84, 84) env = Env(args.cfg_path, args.frames_stack, args.res) args.state_shape = args.res args.action_shape = env.action_space.shape or env.action_space.n # should be N_FRAMES x H x W print("Observations shape:", args.state_shape) print("Actions shape:", args.action_shape) # make environments train_envs = ShmemVectorEnv([ lambda: Env(args.cfg_path, args.frames_stack, args.res) for _ in range(args.training_num) ]) test_envs = ShmemVectorEnv([ lambda: Env(args.cfg_path, args.frames_stack, args.res, args.save_lmp) for _ in range(min(os.cpu_count() - 1, args.test_num)) ]) # seed np.random.seed(args.seed) torch.manual_seed(args.seed) train_envs.seed(args.seed) test_envs.seed(args.seed) # define model net = C51(*args.state_shape, args.action_shape, args.num_atoms, args.device) optim = torch.optim.Adam(net.parameters(), lr=args.lr) # define policy policy = C51Policy(net, optim, args.gamma, args.num_atoms, args.v_min, args.v_max, args.n_step, target_update_freq=args.target_update_freq).to( args.device) # load a previous policy if args.resume_path: policy.load_state_dict( torch.load(args.resume_path, map_location=args.device)) print("Loaded agent from: ", args.resume_path) # replay buffer: `save_last_obs` and `stack_num` can be removed together # when you have enough RAM buffer = VectorReplayBuffer(args.buffer_size, buffer_num=len(train_envs), ignore_obs_next=True, save_only_last_obs=True, stack_num=args.frames_stack) # collector train_collector = Collector(policy, train_envs, buffer, exploration_noise=True) test_collector = Collector(policy, test_envs, exploration_noise=True) # log log_path = os.path.join(args.logdir, args.task, 'c51') writer = SummaryWriter(log_path) writer.add_text("args", str(args)) logger = TensorboardLogger(writer) def save_best_fn(policy): torch.save(policy.state_dict(), os.path.join(log_path, 'policy.pth')) def stop_fn(mean_rewards): if env.spec.reward_threshold: return mean_rewards >= env.spec.reward_threshold elif 'Pong' in args.task: return mean_rewards >= 20 else: return False def train_fn(epoch, env_step): # nature DQN setting, linear decay in the first 1M steps if env_step <= 1e6: eps = args.eps_train - env_step / 1e6 * \ (args.eps_train - args.eps_train_final) else: eps = args.eps_train_final policy.set_eps(eps) if env_step % 1000 == 0: logger.write("train/env_step", env_step, {"train/eps": eps}) def test_fn(epoch, env_step): policy.set_eps(args.eps_test) # watch agent's performance def watch(): print("Setup test envs ...") policy.eval() policy.set_eps(args.eps_test) test_envs.seed(args.seed) if args.save_buffer_name: print(f"Generate buffer with size {args.buffer_size}") buffer = VectorReplayBuffer(args.buffer_size, buffer_num=len(test_envs), ignore_obs_next=True, save_only_last_obs=True, stack_num=args.frames_stack) collector = Collector(policy, test_envs, buffer, exploration_noise=True) result = collector.collect(n_step=args.buffer_size) print(f"Save buffer into {args.save_buffer_name}") # Unfortunately, pickle will cause oom with 1M buffer size buffer.save_hdf5(args.save_buffer_name) else: print("Testing agent ...") test_collector.reset() result = test_collector.collect(n_episode=args.test_num, render=args.render) rew = result["rews"].mean() lens = result["lens"].mean() * args.skip_num print(f'Mean reward (over {result["n/ep"]} episodes): {rew}') print(f'Mean length (over {result["n/ep"]} episodes): {lens}') if args.watch: watch() exit(0) # test train_collector and start filling replay buffer train_collector.collect(n_step=args.batch_size * args.training_num) # trainer result = offpolicy_trainer(policy, train_collector, test_collector, args.epoch, args.step_per_epoch, args.step_per_collect, args.test_num, args.batch_size, train_fn=train_fn, test_fn=test_fn, stop_fn=stop_fn, save_best_fn=save_best_fn, logger=logger, update_per_step=args.update_per_step, test_in_train=False) pprint.pprint(result) watch()
def test_c51(args=get_args()): env, train_envs, test_envs = make_atari_env( args.task, args.seed, args.training_num, args.test_num, scale=args.scale_obs, frame_stack=args.frames_stack, ) args.state_shape = env.observation_space.shape or env.observation_space.n args.action_shape = env.action_space.shape or env.action_space.n # should be N_FRAMES x H x W print("Observations shape:", args.state_shape) print("Actions shape:", args.action_shape) # seed np.random.seed(args.seed) torch.manual_seed(args.seed) # define model net = C51(*args.state_shape, args.action_shape, args.num_atoms, args.device) optim = torch.optim.Adam(net.parameters(), lr=args.lr) # define policy policy = C51Policy(net, optim, args.gamma, args.num_atoms, args.v_min, args.v_max, args.n_step, target_update_freq=args.target_update_freq).to( args.device) # load a previous policy if args.resume_path: policy.load_state_dict( torch.load(args.resume_path, map_location=args.device)) print("Loaded agent from: ", args.resume_path) # replay buffer: `save_last_obs` and `stack_num` can be removed together # when you have enough RAM buffer = VectorReplayBuffer(args.buffer_size, buffer_num=len(train_envs), ignore_obs_next=True, save_only_last_obs=True, stack_num=args.frames_stack) # collector train_collector = Collector(policy, train_envs, buffer, exploration_noise=True) test_collector = Collector(policy, test_envs, exploration_noise=True) # log now = datetime.datetime.now().strftime("%y%m%d-%H%M%S") args.algo_name = "c51" log_name = os.path.join(args.task, args.algo_name, str(args.seed), now) log_path = os.path.join(args.logdir, log_name) # logger if args.logger == "wandb": logger = WandbLogger( save_interval=1, name=log_name.replace(os.path.sep, "__"), run_id=args.resume_id, config=args, project=args.wandb_project, ) writer = SummaryWriter(log_path) writer.add_text("args", str(args)) if args.logger == "tensorboard": logger = TensorboardLogger(writer) else: # wandb logger.load(writer) def save_best_fn(policy): torch.save(policy.state_dict(), os.path.join(log_path, "policy.pth")) def stop_fn(mean_rewards): if env.spec.reward_threshold: return mean_rewards >= env.spec.reward_threshold elif "Pong" in args.task: return mean_rewards >= 20 else: return False def train_fn(epoch, env_step): # nature DQN setting, linear decay in the first 1M steps if env_step <= 1e6: eps = args.eps_train - env_step / 1e6 * \ (args.eps_train - args.eps_train_final) else: eps = args.eps_train_final policy.set_eps(eps) if env_step % 1000 == 0: logger.write("train/env_step", env_step, {"train/eps": eps}) def test_fn(epoch, env_step): policy.set_eps(args.eps_test) # watch agent's performance def watch(): print("Setup test envs ...") policy.eval() policy.set_eps(args.eps_test) test_envs.seed(args.seed) if args.save_buffer_name: print(f"Generate buffer with size {args.buffer_size}") buffer = VectorReplayBuffer(args.buffer_size, buffer_num=len(test_envs), ignore_obs_next=True, save_only_last_obs=True, stack_num=args.frames_stack) collector = Collector(policy, test_envs, buffer, exploration_noise=True) result = collector.collect(n_step=args.buffer_size) print(f"Save buffer into {args.save_buffer_name}") # Unfortunately, pickle will cause oom with 1M buffer size buffer.save_hdf5(args.save_buffer_name) else: print("Testing agent ...") test_collector.reset() result = test_collector.collect(n_episode=args.test_num, render=args.render) rew = result["rews"].mean() print(f"Mean reward (over {result['n/ep']} episodes): {rew}") if args.watch: watch() exit(0) # test train_collector and start filling replay buffer train_collector.collect(n_step=args.batch_size * args.training_num) # trainer result = offpolicy_trainer( policy, train_collector, test_collector, args.epoch, args.step_per_epoch, args.step_per_collect, args.test_num, args.batch_size, train_fn=train_fn, test_fn=test_fn, stop_fn=stop_fn, save_best_fn=save_best_fn, logger=logger, update_per_step=args.update_per_step, test_in_train=False, ) pprint.pprint(result) watch()