sess.run(tf.global_variables_initializer()) else: saver.restore(sess, load_path) print("Model restored from %s." % load_path) if outputPressure: outputDataName = "pressure" # load test data tiCr.loadTestDataNpz(fromSim, toSim, emptyTileValue, cropTileSizeLow, cropOverlap, 0.95, 0.05, load_vel=useVelocities, low_res_size=simSizeLow, upres=upRes, keepAll=keepAll, special_output_type=outputDataName, bWidth=bWidth) if useVelocities and not useDensity: tiCr.reduceInputsToVelocity(dimensions=3) tiCr.splitTileData(0.95, 0.05) # create a summary to monitor cost tensor lossTrain = tf.summary.scalar("loss", costFunc) lossTest = tf.summary.scalar("lossTest", costFunc) merged_summary_op = tf.summary.merge_all()
# create session and saver sess = tf.InteractiveSession() saver = tf.train.Saver() # init vars or load model if loadModelTest == -1: sess.run(tf.global_variables_initializer()) else: saver.restore(sess, load_path) print("Model restored from %s." % load_path) # load test data if (fileFormat == "npz"): tiCr.loadTestDataNpz(fromSim, toSim, emptyTileValue, cropTileSizeLow, cropOverlap, 0.95, 0.05, load_vel=useVelocities, low_res_size=simSizeLow, upres=upRes, keepAll=keepAll) elif (fileFormat == "uni"): tiCr.loadTestDataUni(fromSim, toSim, emptyTileValue, cropTileSizeLow, cropOverlap, 0.95, 0.05, load_vel=useVelocities, low_res_size=simSizeLow, upres=upRes) else: print("\n ERROR: Unknown file format \"" + fileFormat + "\". Use \"npz\" or \"uni\".") exit() #uniio.backupFile(__file__, test_path) # create a summary to monitor cost tensor lossTrain = tf.summary.scalar("loss", costFunc) lossTest = tf.summary.scalar("lossTest", costFunc) merged_summary_op = tf.summary.merge_all() summary_writer = tf.summary.FileWriter(test_path, sess.graph) # ---------------------------------------------