Exemple #1
0
    def test_functional_model_save_load_with_custom_loss_and_metric(self):
        inputs = keras.Input(shape=(4, ))
        x = keras.layers.Dense(8, activation="relu")(inputs)
        outputs = keras.layers.Dense(3, activation="softmax")(x)
        model = keras.Model(inputs=inputs, outputs=outputs)
        custom_loss = keras.layers.Lambda(lambda x: keras.backend.sum(x * x))(
            x)
        model.add_loss(custom_loss)
        model.add_metric(custom_loss, aggregation="mean", name="custom_loss")

        model.compile(
            loss=keras.losses.SparseCategoricalCrossentropy(),
            optimizer=optimizers.gradient_descent_v2.SGD(),
            metrics=[keras.metrics.SparseCategoricalCrossentropy()],
        )

        data_x = np.random.normal(size=(32, 4))
        data_y = np.random.randint(0, 3, size=32)
        model.train_on_batch(data_x, data_y)

        tiledb_uri = os.path.join(self.get_temp_dir(), "model_array")
        tiledb_model_obj = TensorflowTileDB(uri=tiledb_uri)
        tiledb_model_obj.save(model=model, include_optimizer=True)
        loaded_model = tiledb_model_obj.load(compile_model=True)

        # Assert all evaluation results are the same.
        self.assertAllClose(model.evaluate(data_x, data_y),
                            loaded_model.evaluate(data_x, data_y), 1e-9)

        # Assert model predictions are equal
        np.testing.assert_array_equal(loaded_model.predict(data_x),
                                      model.predict(data_x))
Exemple #2
0
    def test_sequential_model_save_load_without_input_shape(self):
        model = keras.models.Sequential()
        model.add(keras.layers.Dense(2))
        model.add(keras.layers.RepeatVector(3))
        model.add(keras.layers.TimeDistributed(keras.layers.Dense(3)))
        model.compile(
            loss=keras.losses.MSE,
            optimizer="rmsprop",
            metrics=[
                keras.metrics.categorical_accuracy,
                keras.metrics.CategoricalAccuracy(name="cat_acc"),
            ],
            weighted_metrics=[
                keras.metrics.categorical_accuracy,
                keras.metrics.CategoricalAccuracy(name="cat_acc2"),
            ],
            sample_weight_mode="temporal",
        )
        data_x = np.random.random((1, 3))
        data_y = np.random.random((1, 3, 3))
        model.train_on_batch(data_x, data_y)

        tiledb_uri = os.path.join(self.get_temp_dir(), "model_array")
        tiledb_model_obj = TensorflowTileDB(uri=tiledb_uri)
        tiledb_model_obj.save(model=model, include_optimizer=True)
        loaded_model = tiledb_model_obj.load(compile_model=True)

        # Assert model predictions are equal
        np.testing.assert_array_equal(loaded_model.predict(data_x),
                                      model.predict(data_x))
Exemple #3
0
    def test_save_load_for_rnn_layers(self):
        inputs = keras.Input([10, 10], name="train_input")
        rnn_layers = [
            keras.layers.LSTMCell(size,
                                  recurrent_dropout=0,
                                  name="rnn_cell%d" % i)
            for i, size in enumerate([32, 32])
        ]
        rnn_output = keras.layers.RNN(rnn_layers,
                                      return_sequences=True,
                                      name="rnn_layer")(inputs)
        pred_feat = keras.layers.Dense(10,
                                       name="prediction_features")(rnn_output)
        pred = keras.layers.Softmax()(pred_feat)
        model = keras.Model(inputs=[inputs], outputs=[pred, pred_feat])

        tiledb_uri = os.path.join(self.get_temp_dir(), "model_array")
        tiledb_model_obj = TensorflowTileDB(uri=tiledb_uri)
        tiledb_model_obj.save(model=model, include_optimizer=False)
        loaded_model = tiledb_model_obj.load(compile_model=False)

        data = np.random.rand(50, 10, 10)

        # Assert model predictions are equal
        np.testing.assert_array_equal(loaded_model.predict(data),
                                      model.predict(data))
Exemple #4
0
    def test_save_load_without_compile_sequential(self):
        sequential_model = testing_utils.get_small_sequential_mlp(
            num_hidden=1, num_classes=2, input_dim=3)
        tiledb_uri = os.path.join(self.get_temp_dir(), "model_array")
        tiledb_model_obj = TensorflowTileDB(uri=tiledb_uri)
        tiledb_model_obj.save(model=sequential_model, include_optimizer=False)
        loaded_model = tiledb_model_obj.load(compile_model=False)
        data = np.random.rand(100, 3)

        # Assert model predictions are equal
        np.testing.assert_array_equal(loaded_model.predict(data),
                                      sequential_model.predict(data))
Exemple #5
0
    def test_save_load_with_dense_features(self):
        cols = [
            feature_column_lib.numeric_column("a"),
            feature_column_lib.indicator_column(
                feature_column_lib.categorical_column_with_vocabulary_list(
                    "b", ["one", "two"])),
        ]
        input_layers = {
            "a": keras.layers.Input(shape=(1, ), name="a"),
            "b": keras.layers.Input(shape=(1, ), name="b", dtype="string"),
        }

        fc_layer = dense_features.DenseFeatures(cols)(input_layers)
        output = keras.layers.Dense(10)(fc_layer)

        model = keras.models.Model(input_layers, output)

        model.compile(
            loss=keras.losses.MSE,
            optimizer="rmsprop",
            metrics=[keras.metrics.categorical_accuracy],
        )

        tiledb_uri = os.path.join(self.get_temp_dir(), "model_array")
        tiledb_model_obj = TensorflowTileDB(uri=tiledb_uri)
        tiledb_model_obj.save(model=model, include_optimizer=True)
        loaded_model = tiledb_model_obj.load(compile_model=True)

        model_opt_weights = batch_get_value(getattr(model.optimizer,
                                                    "weights"))
        loaded_opt_weights = batch_get_value(
            getattr(loaded_model.optimizer, "weights"))

        # Assert optimizer weights are equal
        for weight_model, weight_loaded_model in zip(model_opt_weights,
                                                     loaded_opt_weights):
            np.testing.assert_array_equal(weight_model, weight_loaded_model)

        inputs_a = np.arange(10).reshape(10, 1)
        inputs_b = np.arange(10).reshape(10, 1).astype("str")

        # Assert model predictions are equal
        np.testing.assert_array_equal(
            loaded_model.predict({
                "a": inputs_a,
                "b": inputs_b
            }),
            model.predict({
                "a": inputs_a,
                "b": inputs_b
            }),
        )
Exemple #6
0
    def test_save_load_with_compile_functional(self):
        functional_model = testing_utils.get_small_functional_mlp(
            num_hidden=1, num_classes=2, input_dim=3)
        functional_model = add_optimizer(functional_model)
        tiledb_uri = os.path.join(self.get_temp_dir(), "model_array")
        tiledb_model_obj = TensorflowTileDB(uri=tiledb_uri)
        tiledb_model_obj.save(model=functional_model, include_optimizer=True)
        loaded_model = tiledb_model_obj.load(compile_model=True)
        data = np.random.rand(100, 3)

        model_opt_weights = batch_get_value(
            getattr(functional_model.optimizer, "weights"))
        loaded_opt_weights = batch_get_value(
            getattr(loaded_model.optimizer, "weights"))

        # Assert optimizer weights are equal
        for weight_model, weight_loaded_model in zip(model_opt_weights,
                                                     loaded_opt_weights):
            np.testing.assert_array_equal(weight_model, weight_loaded_model)

        # Assert model predictions are equal
        np.testing.assert_array_equal(loaded_model.predict(data),
                                      functional_model.predict(data))
Exemple #7
0
    def test_load_tiledb_error_with_wrong_uri(self):
        tiledb_model_obj = TensorflowTileDB(uri="dummy_uri")

        with self.assertRaises(tiledb.TileDBError):
            tiledb_model_obj.load(compile_model=False)
Exemple #8
0
    def test_save_load_with_sequence_features(self):
        cols = [
            feature_column_lib.sequence_numeric_column("a"),
            feature_column_lib.indicator_column(
                feature_column_lib.
                sequence_categorical_column_with_vocabulary_list(
                    "b", ["one", "two"])),
        ]
        input_layers = {
            "a":
            keras.layers.Input(shape=(None, 1), sparse=True, name="a"),
            "b":
            keras.layers.Input(shape=(None, 1),
                               sparse=True,
                               name="b",
                               dtype="string"),
        }

        fc_layer, _ = ksfc.SequenceFeatures(cols)(input_layers)
        x = keras.layers.GRU(32)(fc_layer)
        output = keras.layers.Dense(10)(x)

        model = keras.models.Model(input_layers, output)

        model.compile(
            loss=keras.losses.MSE,
            optimizer="rmsprop",
            metrics=[keras.metrics.categorical_accuracy],
        )

        tiledb_uri = os.path.join(self.get_temp_dir(), "model_array")
        tiledb_model_obj = TensorflowTileDB(uri=tiledb_uri)
        tiledb_model_obj.save(model=model, include_optimizer=True)
        loaded_model = tiledb_model_obj.load(compile_model=True)

        model_opt_weights = batch_get_value(getattr(model.optimizer,
                                                    "weights"))
        loaded_opt_weights = batch_get_value(
            getattr(loaded_model.optimizer, "weights"))

        # Assert optimizer weights are equal
        for weight_model, weight_loaded_model in zip(model_opt_weights,
                                                     loaded_opt_weights):
            np.testing.assert_array_equal(weight_model, weight_loaded_model)

        batch_size = 10
        timesteps = 1

        values_a = np.arange(10, dtype=np.float32)
        indices_a = np.zeros((10, 3), dtype=np.int64)
        indices_a[:, 0] = np.arange(10)
        inputs_a = sparse_tensor.SparseTensor(indices_a, values_a,
                                              (batch_size, timesteps, 1))

        values_b = np.zeros(10, dtype=np.str)
        indices_b = np.zeros((10, 3), dtype=np.int64)
        indices_b[:, 0] = np.arange(10)
        inputs_b = sparse_tensor.SparseTensor(indices_b, values_b,
                                              (batch_size, timesteps, 1))

        # Assert model predictions are equal
        np.testing.assert_array_equal(
            loaded_model.predict({
                "a": inputs_a,
                "b": inputs_b
            }, steps=1),
            model.predict({
                "a": inputs_a,
                "b": inputs_b
            }, steps=1),
        )