def test_merge(self): # Test padding tiler = Tiler(data_shape=self.data.shape, tile_shape=(12, )) merger = Merger(tiler) for t_id, t in tiler(self.data): merger.add(t_id, t) np.testing.assert_equal(merger.merge(unpad=True), self.data) np.testing.assert_equal( merger.merge(unpad=False), np.hstack((self.data, [0, 0, 0, 0, 0, 0, 0, 0]))) # Test argmax merger = Merger(tiler, logits=3) for t_id, t in tiler(self.data): merger.add(t_id, np.vstack((t, t / 2, t / 3))) np.testing.assert_equal(merger.merge(unpad=True, argmax=True), np.zeros((100, ))) np.testing.assert_equal( merger.merge(unpad=True, argmax=False), np.vstack((self.data, self.data / 2, self.data / 3))) np.testing.assert_equal(merger.merge(unpad=False, argmax=True), np.zeros((108, ))) np.testing.assert_equal( merger.merge(unpad=False, argmax=False), np.vstack((np.hstack((self.data, [0, 0, 0, 0, 0, 0, 0, 0])), np.hstack((self.data, [0, 0, 0, 0, 0, 0, 0, 0])) / 2, np.hstack((self.data, [0, 0, 0, 0, 0, 0, 0, 0])) / 3)))
def test_generate_window(self): tiler = Tiler(data_shape=self.data.shape, tile_shape=(10, )) with self.assertRaises(ValueError): Merger(tiler=tiler, window='unsupported_window') with self.assertRaises(ValueError): Merger(tiler=tiler, window=np.zeros((10, 10))) with self.assertRaises(ValueError): Merger(tiler=tiler, window=10) window = np.zeros((10, )) window[1:10] = 1 merger = Merger(tiler=tiler, window=window) for t_id, t in tiler(self.data): merger.add(t_id, t) np.testing.assert_equal(merger.merge(), [i if i % 10 else 0 for i in range(100)])
patch[-32:, :, :] = 0 patch[:, :32, :] = 0 patch[:, -32:, :] = 0 return patch # Another example can be to just modify the whole patch # Using PIL, we adjust the color balance enhancer = ImageEnhance.Color(Image.fromarray(patch)) return np.array(enhancer.enhance(5.0)) # Iterate through all the tile and apply the processing function # as well as add them back to the merger for tile_id, tile in tiler(padded_image): processed_tile = process(tile) merger.add(tile_id, processed_tile) # Merger.merge() returns unpadded from tiler image, but we still need to unpad line#21 final_image = merger.merge().astype(np.uint8) final_unpadded_image = final_image[32:-32, 32:-32, :] # Show the final merged image, weights and number of times each pixel was seen in tiles fig, ax = plt.subplots(3, 2, sharex=True, sharey=True) ax[0, 0].set_title('Original image') ax[0, 0].imshow(image) ax[0, 1].set_title('Final unpadded image') ax[0, 1].imshow(final_unpadded_image) ax[1, 0].set_title('Padded image') ax[1, 0].imshow(padded_image) ax[1, 1].set_title('Merged image')
from PIL import Image from tiler import Tiler, Merger # Loading image # Photo by Christian Holzinger on Unsplash: https://unsplash.com/photos/CUY_YHhCFl4 image = np.array(Image.open('example_image.jpg')) # 1280x1920x3 # Setup Tiler and Merger tiler = Tiler(data_shape=image.shape, tile_shape=(200, 200, 3), channel_dimension=2) merger = Merger(tiler) # Example 1: process all tiles one by one, i.e. batch_size=0 for tile_i, tile in tiler(image, batch_size=0): merger.add(tile_i, tile) result_bs0 = merger.merge().astype(np.uint8) # Example 2: process all tiles in batches of 1, i.e. batch_size=1 merger.reset() for batch_i, batch in tiler(image, batch_size=1): merger.add_batch(batch_i, 1, batch) result_bs1 = merger.merge().astype(np.uint8) # Example 3: process all tiles in batches of 10, i.e. batch_size=10 merger.reset() for batch_i, batch in tiler(image, batch_size=10): merger.add_batch(batch_i, 10, batch) result_bs10 = merger.merge().astype(np.uint8) # Example 4: process all tiles in batches of 10, but drop the batch that has <batch_size tiles, drop_last=True
def test_add(self): tiler = Tiler(data_shape=self.data.shape, tile_shape=(10, )) tiler2 = Tiler(data_shape=self.data.shape, tile_shape=(12, ), mode='irregular') tiler3 = Tiler(data_shape=(3, ) + self.data.shape, tile_shape=( 3, 10, ), channel_dimension=0) merger = Merger(tiler) merger_logits = Merger(tiler, logits=3) merger_irregular = Merger(tiler2) merger_channel_dim = Merger(tiler3) tile = tiler.get_tile(self.data, 0) tile_logits = np.vstack((tile, tile, tile)) tile_irregular = tiler2.get_tile(self.data, len(tiler2) - 1) # Wrong tile id cases with self.assertRaises(IndexError): merger.add(-1, np.ones((10, ))) with self.assertRaises(IndexError): merger.add(len(tiler), np.ones((10, ))) # Usual mergers expect tile_shape == data_shape with self.assertRaises(ValueError): merger.add(0, np.ones(( 3, 10, ))) merger.add(0, tile) np.testing.assert_equal(merger.merge()[:10], tile) # Logits merger expects an extra dimension in front for logits with self.assertRaises(ValueError): merger_logits.add(0, np.ones((10, ))) merger_logits.add(0, tile_logits) np.testing.assert_equal(merger_logits.merge()[:, :10], tile_logits) np.testing.assert_equal( merger_logits.merge(argmax=True)[:10], np.zeros((10, ))) # Irregular merger expects all(data_shape <= tile_shape) with self.assertRaises(ValueError): merger_irregular.add(0, np.ones((13, ))) merger_irregular.add(len(tiler2) - 1, tile_irregular) np.testing.assert_equal( merger_irregular.merge()[-len(tile_irregular):], tile_irregular) # Channel dimension merger with self.assertRaises(ValueError): merger_channel_dim.add(0, np.ones((10, ))) merger_channel_dim.add(0, tile_logits) np.testing.assert_equal(merger_channel_dim.merge()[:, :10], tile_logits) # gotta get that 100% coverage # this should just print a warning # let's suppress it to avoid confusion with open(os.devnull, "w") as null: with redirect_stderr(null): merger.set_window('boxcar')