Exemple #1
0
def predict_timestamps():
    if not flask.request.json:
        flask.abort(400)
    dp.setHours2Predict(TU.parseHours(flask.request.json))  
    hours = list(TU.formatHours(dp.getHours2Predict()))
    pred = dp.getPredictions()
    return json.dumps(TU.outStr(hours,pred)), 201 
    fig3 = plt.figure()
    plt.boxplot(aDays.values())
    plt.title('Demand vs day of week')
    plt.xlabel('Day')
    plt.ylabel('Demand')
    plt.show()
    
def writeCSV(filename, data):
    out = csv.writer(open(filename, 'wb'), delimiter=',') 
    for d in data:
        print d
   	out.writerow(d.split(','))
    
#reload(DP)
#reload(TU)

fd =  open('uber_demand_prediction_challenge.json')

jsonData = json.load(fd)
fd.close()
dp = DP.DemandPrediction()
dp.setTrainingData(jsonData)
dp.train()
mayHours = DP.genHours('2012-05-01T00:00:00+00:00', '2012-06-01T00:00:00+00:00')
dp.setHours2Predict(mayHours)
pred = dp.getPredictions()


writeCSV('mayPredictions2.csv',TU.outStr(TU.formatHours(mayHours),pred) )

Exemple #3
0
import requests
import json
import timeUtils as TU

def apiCall(cmd,data):
    if (cmd!='train' and cmd!='predict' and cmd!='index'):
        raise Exception("invalid command")
    url = "http://localhost:5000/"+cmd+"/"
    print url
    headers = {'Content-type': 'application/json', 'Accept': 'text/plain'}
    r = requests.post(url, data=json.dumps(data), headers=headers)
    return r

# load data
fd =  open('uber_demand_prediction_challenge.json')
jsonData = json.load(fd)
fd.close()

# train model 
r = apiCall('train',jsonData)

# predict demand
hours =  TU.genHours('2012-05-01T00:00:00+00:00', '2012-06-01T00:00:00+00:00')
r =apiCall('predict',TU.formatHours(hours))