def test_gram_update(X_dim, Y_dim, n): """Test update""" X = jax.random.uniform(random.generate_key(), shape=(n, X_dim)) Y = jax.random.uniform(random.generate_key(), shape=(n, Y_dim)) gram = OnlineGram(X_dim, Y_dim) gram.update(X, Y) np.testing.assert_array_almost_equal(gram.matrix(normalize=False, fit_intercept=False), X.T @ Y)
def test_gram_normalize(X_dim, Y_dim, n): """Test normalize""" X = jax.random.uniform(random.generate_key(), shape=(n, X_dim)) Y = jax.random.uniform(random.generate_key(), shape=(n, Y_dim)) gram = OnlineGram(X_dim, Y_dim) gram.update(X, Y) X_norm = (X - X.mean(axis=0)) / X.std(axis=0) Y_norm = (Y - Y.mean(axis=0)) / Y.std(axis=0) np.testing.assert_array_almost_equal( gram.matrix(normalize=True, fit_intercept=False), X_norm.T @ Y_norm, decimal=1 )
def test_gram_update_iterative(X_dim, Y_dim, n): """Test update iteratively""" X = jax.random.uniform(random.generate_key(), shape=(n, X_dim)) Y = jax.random.uniform(random.generate_key(), shape=(n, Y_dim)) gram = OnlineGram(X_dim, Y_dim) for x, y in zip(X, Y): gram.update(x.reshape(1, -1), y.reshape(1, -1)) np.testing.assert_array_almost_equal( gram.matrix(normalize=False, fit_intercept=False), X.T @ Y, decimal=3 )
def test_gram_intercept_xtx(X_dim, n, normalize): """Test intercept on X.T @ X""" X = jax.random.uniform(random.generate_key(), shape=(n, X_dim)) gram = OnlineGram(X_dim) gram.update(X) if normalize: X = (X - X.mean(axis=0)) / X.std(axis=0) X = jnp.hstack((jnp.ones((n, 1)), X)) np.testing.assert_array_almost_equal( gram.matrix(normalize=normalize, fit_intercept=True), X.T @ X, decimal=1 )
def test_gram_projection_xtx(X_dim, n, k, normalize, fit_intercept): """Test projection on X.T @ X""" X = jax.random.uniform(random.generate_key(), shape=(n, X_dim)) k = min(k, X_dim) projection = jax.random.uniform(random.generate_key(), shape=(X_dim, k)) gram = OnlineGram(X_dim) gram.update(X) if normalize: X = (X - X.mean(axis=0)) / X.std(axis=0) expected = projection.T @ X.T @ X @ projection if fit_intercept: expected = gram.fit_intercept(expected, normalize=normalize, projection=projection) np.testing.assert_array_almost_equal( gram.matrix(normalize=normalize, projection=projection, fit_intercept=fit_intercept), expected, decimal=1, )
def test_gram_intercept_xty(X_dim, Y_dim, n, normalize): """Test intercept on X.T @ Y""" X = jax.random.uniform(random.generate_key(), shape=(n, X_dim)) Y = jax.random.uniform(random.generate_key(), shape=(n, Y_dim)) gram = OnlineGram(X_dim, Y_dim) gram.update(X, Y) np.testing.assert_array_almost_equal(gram.mean.squeeze(), X.mean(axis=0)) np.testing.assert_array_almost_equal(gram.std.squeeze(), X.std(axis=0)) assert gram.observations == X.shape[0] if normalize: X = (X - X.mean(axis=0)) / X.std(axis=0) Y = (Y - Y.mean(axis=0)) / Y.std(axis=0) X = jnp.hstack((jnp.ones((n, 1)), X)) np.testing.assert_array_almost_equal( gram.matrix(normalize=normalize, fit_intercept=True), X.T @ Y, decimal=1 )
def fit_gram( XTX: OnlineGram, XTY: OnlineGram, alpha: float = 1.0, normalize: bool = False, projection: np.ndarray = None, input_dim: int = None, ): """Compute linear regression parameters from gram matrix Notes: * Assumes over-determined systems * Assumes we always fit an intercept """ fit_intercept = True feature_dim = XTX.feature_dim if projection is None else projection.shape[1] output_dim = XTY.output_dim if input_dim is None: history_len = None else: if feature_dim % input_dim != 0: raise ValueError("Original input dimension must evenly divide feature dimensions") history_len = feature_dim // input_dim if XTX.observations <= feature_dim: raise ValueError( "Underdetermined systems not currently supported (observations: {}," "features: {})".format(XTX.observations, feature_dim) ) # Finalize gram matrices XTX = XTX.matrix( normalize=normalize, projection=projection, fit_intercept=fit_intercept, input_dim=input_dim, ) XTY = XTY.matrix( normalize=normalize, projection=projection, fit_intercept=fit_intercept, input_dim=input_dim, ) inv = _compute_xtx_inverse(XTX, alpha) beta = _fit_unconstrained(inv, XTY) # Ignore constrained regression if we project if input_dim is not None: R, r = _form_constraints( input_dim=input_dim, output_dim=output_dim, history_len=history_len, fit_intercept=fit_intercept, ) beta = _fit_constrained(beta, inv, R, r) beta = beta.take(jnp.arange(0, len(beta), input_dim), axis=0) return beta[1:], beta[0] return beta[1:].reshape(1, feature_dim, -1), beta[0]