Exemple #1
0
def run(fns_in,
        corner,
        run_corner,
        sub_json=None,
        bounds_csv=None,
        dedup=True,
        massage=False,
        outfn=None,
        verbose=False,
        **kwargs):
    print('Loading data')
    Ads, b = loadc_Ads_b(fns_in, corner, ico=True)

    # Remove duplicate rows
    # is this necessary?
    # maybe better to just add them into the matrix directly
    if dedup:
        oldn = len(Ads)
        iold = instances(Ads)
        Ads, b = simplify_rows(Ads, b, corner=corner)
        print('Simplify %u => %u rows' % (oldn, len(Ads)))
        print('Simplify %u => %u instances' % (iold, instances(Ads)))

    if sub_json:
        print('Sub: %u rows' % len(Ads))
        iold = instances(Ads)
        names_old = index_names(Ads)
        run_sub_json(Ads, sub_json, verbose=verbose)
        names = index_names(Ads)
        print("Sub: %u => %u names" % (len(names_old), len(names)))
        print('Sub: %u => %u instances' % (iold, instances(Ads)))
    else:
        names = index_names(Ads)
    '''
    Substitution .csv
    Special .csv containing one variable per line
    Used primarily for multiple optimization passes, such as different algorithms or additional constraints
    '''
    if bounds_csv:
        Ads2, b2 = loadc_Ads_b([bounds_csv], corner, ico=True)
        bounds = Ads2bounds(Ads2, b2)
        assert len(bounds), 'Failed to load bounds'
        rows_old = len(Ads)
        Ads, b = filter_bounds(Ads, b, bounds, corner)
        print('Filter bounds: %s => %s + %s rows' %
              (rows_old, len(Ads), len(Ads2)))
        Ads = Ads + Ads2
        b = b + b2
        assert len(Ads) or allow_zero_eqns()
        assert len(Ads) == len(b), 'Ads, b length mismatch'

    if verbose:
        print
        print_eqns(Ads, b, verbose=verbose)

        #print
        #col_dist(A_ubd, 'final', names)
    if massage:
        try:
            Ads, b = massage_equations(Ads, b, corner=corner)
        except SimplifiedToZero:
            if not allow_zero_eqns():
                raise
            print('WARNING: simplified to zero equations')
            Ads = []
            b = []

    print('Converting to numpy...')
    names, Anp = A_ds2np(Ads)
    run_corner(Anp,
               np.asarray(b),
               names,
               corner,
               outfn=outfn,
               verbose=verbose,
               **kwargs)
 def debug(what):
     check_cols()
     if 1 or verbose:
         print('')
         print_eqns(Ads, b, verbose=verbose, label=what, lim=20)
         col_dist(Ads, what)
Exemple #3
0
 def debug(what):
     if verbose:
         print('')
         print_eqns(Ads, b, verbose=verbose, label=what, lim=20)
         col_dist(Ads, what)
         check_feasible_d(Ads, b)