def main(modelid):

    make_threadsafe = 0
    cut_tess = 1

    fitindiv = 1
    phaseplot = 1
    cornerplot = 1
    subsetcorner = 1
    grounddepth = 1

    N_samples = 30000
    target_accept = 0.9

    OVERWRITE = 1
    REALID = 'TOI_837'

    PLOTDIR = os.path.join(RESULTSDIR,
                           '{}_{}_phot_results'.format(REALID, modelid))
    if not os.path.exists(PLOTDIR):
        os.mkdir(PLOTDIR)
    datestr = '20200711'
    PLOTDIR = os.path.join(PLOTDIR, datestr)

    ##########################################

    assert modelid in ['tessindivtransit']

    print(42 * '#')
    print(modelid)
    print(42 * '#')

    if not os.path.exists(PLOTDIR):
        os.mkdir(PLOTDIR)

    pklpath = os.path.join(os.path.expanduser('~'), 'local', 'timmy',
                           f'{REALID}_model_{modelid}_{datestr}.pkl')
    np.random.seed(42)

    # get tess data
    provenance = 'spoc'  # could be "cdips"
    yval = 'PDCSAP_FLUX'  # could be SAP_FLUX
    x_obs, y_obs, y_err = get_clean_tessphot(provenance,
                                             yval,
                                             binsize=None,
                                             maskflares=1)
    #y_flat, y_trend = detrend_tessphot(x_obs, y_obs, y_err)
    s = np.isfinite(y_obs) & np.isfinite(x_obs) & np.isfinite(y_err)
    x_obs, y_obs, y_err = x_obs[s], y_obs[s], y_err[s]
    if cut_tess:
        x_obs, y_obs, y_err = _subset_cut(x_obs, y_obs, y_err, n=3.5)

    ngroups, groupinds = find_lc_timegroups(x_obs, mingap=4.0)
    assert ngroups == 5

    datasets = OrderedDict()
    for ix, g in enumerate(groupinds):
        tess_texp = np.nanmedian(np.diff(x_obs[g]))
        datasets[f'tess_{ix}'] = [x_obs[g], y_obs[g], y_err[g], tess_texp]

    mp = ModelParser(modelid)

    prior_d = initialize_prior_d(mp.modelcomponents, datasets=datasets)

    m = ModelFitter(modelid,
                    datasets,
                    prior_d,
                    plotdir=PLOTDIR,
                    pklpath=pklpath,
                    overwrite=OVERWRITE,
                    N_samples=N_samples,
                    target_accept=target_accept)

    print(pm.summary(m.trace, var_names=list(prior_d.keys())))
    summdf = pm.summary(m.trace,
                        var_names=list(prior_d.keys()),
                        round_to=10,
                        kind='stats',
                        stat_funcs={'median': np.nanmedian},
                        extend=True)

    printparams = ['r_planet', 'b']
    print(42 * '-')
    for p in printparams:
        med = np.percentile(m.trace[p], 50)
        up = np.percentile(m.trace[p], 84)
        low = np.percentile(m.trace[p], 36)
        print(f'{p} limit: {med:.3f} +{up-med:.3f} -{med-low:.3f}')
    print(42 * '-')

    if make_threadsafe:
        pass

    else:
        # if grounddepth:
        #     outpath = join(PLOTDIR, f'{REALID}_{modelid}_grounddepth.png')
        #     tp.plot_grounddepth(m, summdf, outpath, modelid=modelid,
        #                         showerror=0)

        if subsetcorner:
            outpath = join(PLOTDIR, f'{REALID}_{modelid}_subsetcorner.png')
            tp.plot_subsetcorner(m, outpath)

        if phaseplot:
            outpath = join(PLOTDIR, f'{REALID}_{modelid}_phaseplot.png')
            tp.plot_phasefold(m, summdf, outpath, modelid=modelid, inppt=1)

        if fitindiv:
            outpath = join(PLOTDIR, f'{REALID}_{modelid}_fitindiv.png')
            tp.plot_fitindiv(m, summdf, outpath, modelid=modelid)

        if cornerplot:
            outpath = join(PLOTDIR, f'{REALID}_{modelid}_cornerplot.png')
            tp.plot_cornerplot(prior_d, m, outpath)
def main(modelid):

    make_threadsafe = 0
    cut_tess = 1

    fitindiv = 1
    phaseplot = 1
    grounddepth = 1
    cornerplot = 1
    subsetcorner = 1

    N_samples = 30000  # took 2h 20m, but Rhat=1.0 for all
    # N_samples = 2000 # took 16m, 14s. but Rhat=1.01 for b, rp/rs, + a few a1/a2s
    target_accept = 0.9

    OVERWRITE = 1
    REALID = 'TOI_837'

    PLOTDIR = os.path.join(RESULTSDIR,
                           '{}_{}_phot_results'.format(REALID, modelid))
    if not os.path.exists(PLOTDIR):
        os.mkdir(PLOTDIR)
    datestr = '20200711'
    PLOTDIR = os.path.join(PLOTDIR, datestr)

    ##########################################

    assert modelid in ['allindivtransit']

    print(42 * '#')
    print(modelid)
    print(42 * '#')

    if not os.path.exists(PLOTDIR):
        os.mkdir(PLOTDIR)

    pklpath = os.path.join(os.path.expanduser('~'), 'local', 'timmy',
                           f'{REALID}_model_{modelid}_{datestr}.pkl')
    np.random.seed(42)

    # get tess data
    provenance = 'spoc'  # could be "cdips"
    yval = 'PDCSAP_FLUX'  # could be SAP_FLUX
    x_obs, y_obs, y_err = get_clean_tessphot(provenance,
                                             yval,
                                             binsize=None,
                                             maskflares=1)
    #y_flat, y_trend = detrend_tessphot(x_obs, y_obs, y_err)
    s = np.isfinite(y_obs) & np.isfinite(x_obs) & np.isfinite(y_err)
    x_obs, y_obs, y_err = x_obs[s], y_obs[s], y_err[s]
    if cut_tess:
        x_obs, y_obs, y_err = _subset_cut(x_obs, y_obs, y_err, n=3.5)

    ngroups, groupinds = find_lc_timegroups(x_obs, mingap=4.0)
    assert ngroups == 5

    datasets = OrderedDict()
    for ix, g in enumerate(groupinds):
        tess_texp = np.nanmedian(np.diff(x_obs[g]))
        datasets[f'tess_{ix}'] = [x_obs[g], y_obs[g], y_err[g], tess_texp]

    datestrs = ['20200401', '20200426', '20200521', '20200614']
    for ix, d in enumerate(datestrs):
        x_obs, y_obs, y_err = get_elsauce_phot(datestr=d)
        x_obs -= 2457000  # convert to BTJD
        elsauce_texp = np.nanmedian(np.diff(x_obs))
        datasets[f'elsauce_{ix}'] = [x_obs, y_obs, y_err, elsauce_texp]

    datestrs = ['20200529', '20200614', '20200623']
    for ix, d in enumerate(datestrs):
        x_obs, y_obs, y_err = get_astep_phot(datestr=d)
        x_obs += 2450000  # convert to BJD_TDB
        x_obs -= 2457000  # convert to BTJD
        astep_texp = np.nanmedian(np.diff(x_obs))
        datasets[f'astep_{ix}'] = [x_obs, y_obs, y_err, astep_texp]

    mp = ModelParser(modelid)

    prior_d = initialize_prior_d(mp.modelcomponents, datasets=datasets)

    m = ModelFitter(modelid,
                    datasets,
                    prior_d,
                    plotdir=PLOTDIR,
                    pklpath=pklpath,
                    overwrite=OVERWRITE,
                    N_samples=N_samples,
                    target_accept=target_accept)

    print(pm.summary(m.trace, var_names=list(prior_d.keys())))
    summdf = pm.summary(m.trace,
                        var_names=list(prior_d.keys()),
                        round_to=10,
                        kind='stats',
                        stat_funcs={'median': np.nanmedian},
                        extend=True)
    rp_limit = np.percentile(m.trace.r_planet, 1 - 0.9973)
    print(42 * '-')
    print(f'Rp limit: {rp_limit:.3f} Rjup')
    print(42 * '-')

    if make_threadsafe:
        pass

    else:
        if grounddepth:
            outpath = join(PLOTDIR, f'{REALID}_{modelid}_grounddepth.png')
            tp.plot_grounddepth(m,
                                summdf,
                                outpath,
                                modelid=modelid,
                                showerror=0)

        if subsetcorner:
            outpath = join(PLOTDIR, f'{REALID}_{modelid}_subsetcorner.png')
            tp.plot_subsetcorner(m, outpath)

        if phaseplot:
            outpath = join(PLOTDIR, f'{REALID}_{modelid}_phaseplot.png')
            tp.plot_phasefold(m, summdf, outpath, modelid=modelid, inppt=1)

        if fitindiv:
            outpath = join(PLOTDIR, f'{REALID}_{modelid}_fitindiv.png')
            tp.plot_fitindiv(m, summdf, outpath, modelid=modelid)

        if cornerplot:
            outpath = join(PLOTDIR, f'{REALID}_{modelid}_cornerplot.png')
            tp.plot_cornerplot(prior_d, m, outpath)
def main(modelid):

    make_threadsafe = 0
    cut_tess = 1

    fitindiv = 0
    phaseplot = 0
    grounddepth = 0
    cornerplot = 0
    subsetcorner = 0

    N_samples = 30000 # took 2h 20m, but Rhat=1.0 for all
    # N_samples = 100 # testing
    target_accept = 0.9

    OVERWRITE = 1
    REALID = 'TOI_837'

    PLOTDIR = os.path.join(
        RESULTSDIR, '{}_{}_phot_results'.format(REALID, modelid)
    )
    if not os.path.exists(PLOTDIR):
        os.mkdir(PLOTDIR)
    datestr = '20200805'
    PLOTDIR = os.path.join(PLOTDIR, datestr)

    ##########################################

    assert modelid in ['evenindivtransit', 'oddindivtransit']

    print(42*'#')
    print(modelid)
    print(42*'#')

    if not os.path.exists(PLOTDIR):
        os.mkdir(PLOTDIR)

    pklpath = os.path.join(
        os.path.expanduser('~'), 'local', 'timmy',
        f'{REALID}_model_{modelid}_{datestr}.pkl'
    )
    np.random.seed(42)

    # get tess data
    provenance = 'spoc' # could be "cdips"
    yval = 'PDCSAP_FLUX' # could be SAP_FLUX 
    x_obs, y_obs, y_err = get_clean_tessphot(provenance, yval, binsize=None,
                                             maskflares=1)

    s = np.isfinite(y_obs) & np.isfinite(x_obs) & np.isfinite(y_err)
    x_obs, y_obs, y_err = x_obs[s], y_obs[s], y_err[s]
    if cut_tess:
        if 'even' in modelid:
            onlyeven = True
            onlyodd = False
        elif 'odd' in modelid:
            onlyeven = False
            onlyodd = True
        else:
            raise NotImplementedError

        x_obs, y_obs, y_err = _subset_cut(
            x_obs, y_obs, y_err, n=3.5, onlyeven=onlyeven, onlyodd=onlyodd
        )

    ngroups, groupinds = find_lc_timegroups(x_obs, mingap=4.0)
    assert ngroups in [2,3]

    datasets = OrderedDict()
    for ix, g in enumerate(groupinds):
        tess_texp = np.nanmedian(np.diff(x_obs[g]))
        datasets[f'tess_{ix}'] = [x_obs[g], y_obs[g], y_err[g], tess_texp]

    # see /doc/20200805_ephemeris_counting.txt
    if 'even' in modelid:
        datestrs = ['20200401', '20200521']
    elif 'odd' in modelid:
        datestrs = ['20200426', '20200614']
    for ix, d in enumerate(datestrs):
        x_obs, y_obs, y_err = get_elsauce_phot(datestr=d)
        x_obs -= 2457000 # convert to BTJD
        elsauce_texp = np.nanmedian(np.diff(x_obs))
        datasets[f'elsauce_{ix}'] = [x_obs, y_obs, y_err, elsauce_texp]

    if 'even' in modelid:
        datestrs = ['20200623']
    elif 'odd' in modelid:
        datestrs = ['20200529', '20200614']
    for ix, d in enumerate(datestrs):
        x_obs, y_obs, y_err = get_astep_phot(datestr=d)
        x_obs += 2450000 # convert to BJD_TDB
        x_obs -= 2457000 # convert to BTJD
        astep_texp = np.nanmedian(np.diff(x_obs))
        datasets[f'astep_{ix}'] = [x_obs, y_obs, y_err, astep_texp]

    mp = ModelParser(modelid)

    prior_d = initialize_prior_d(mp.modelcomponents, datasets=datasets)

    m = ModelFitter(modelid, datasets, prior_d, plotdir=PLOTDIR,
                    pklpath=pklpath, overwrite=OVERWRITE, N_samples=N_samples,
                    target_accept=target_accept)

    print(pm.summary(m.trace, var_names=list(prior_d.keys())))
    summdf = pm.summary(m.trace, var_names=list(prior_d.keys()), round_to=10,
                        kind='stats', stat_funcs={'median':np.nanmedian},
                        extend=True)

    printparams = ['r_planet', 'b', 'log_r', 'log_r_sq']
    print(42*'-')
    print(modelid)
    for p in printparams:
        if p != 'log_r_sq':
            med = np.percentile(m.trace[p], 50)
            up = np.percentile(m.trace[p], 84)
            low = np.percentile(m.trace[p], 36)
        else:
            med = np.percentile(np.exp(m.trace['log_r'])**2, 50)
            up = np.percentile(np.exp(m.trace['log_r'])**2, 84)
            low = np.percentile(np.exp(m.trace['log_r'])**2, 36)
        print(f'{p} limit: {med:.6f} +{up-med:.6f} -{med-low:.6f}')
    print(42*'-')


    if make_threadsafe:
        pass

    else:
        if grounddepth:
            outpath = join(PLOTDIR, f'{REALID}_{modelid}_grounddepth.png')
            tp.plot_grounddepth(m, summdf, outpath, modelid=modelid,
                                showerror=0)

        if subsetcorner:
            outpath = join(PLOTDIR, f'{REALID}_{modelid}_subsetcorner.png')
            tp.plot_subsetcorner(m, outpath)

        if phaseplot:
            outpath = join(PLOTDIR, f'{REALID}_{modelid}_phaseplot.png')
            tp.plot_phasefold(m, summdf, outpath, modelid=modelid, inppt=1)

        if fitindiv:
            outpath = join(PLOTDIR, f'{REALID}_{modelid}_fitindiv.png')
            tp.plot_fitindiv(m, summdf, outpath, modelid=modelid)

        if cornerplot:
            outpath = join(PLOTDIR, f'{REALID}_{modelid}_cornerplot.png')
            tp.plot_cornerplot(prior_d, m, outpath)
Exemple #4
0
def main(modelid):

    assert modelid == 'rv'

    make_threadsafe = 0

    phaseplot = 0
    cornerplot = 1

    OVERWRITE = 1
    REALID = 'TOI_837'

    PLOTDIR = os.path.join(RESULTSDIR,
                           '{}_{}_fitting_results'.format(REALID, modelid))
    if not os.path.exists(PLOTDIR):
        os.mkdir(PLOTDIR)
    PLOTDIR = os.path.join(PLOTDIR, '20200525')
    if not os.path.exists(PLOTDIR):
        os.mkdir(PLOTDIR)

    print(42 * '#')
    print(modelid)
    print(42 * '#')

    pklpath = os.path.join(os.path.expanduser('~'), 'local', 'timmy',
                           '{}_model_{}.pkl'.format(REALID, modelid))
    np.random.seed(42)

    rv_df = get_clean_rv_data()

    mp = ModelParser(modelid)

    prior_d = initialize_prior_d(mp.modelcomponents)

    m = ModelFitter(modelid,
                    rv_df,
                    prior_d,
                    plotdir=PLOTDIR,
                    pklpath=pklpath,
                    overwrite=OVERWRITE)

    var_names = [
        'r_star', 'logg_star', 'log_K', 'period', 'ecc', 'omega', 'phase',
        't0', 'S_tot', 'ell', 'means', 'sigmas'
    ]

    print(pm.summary(m.trace, var_names=var_names))
    summdf = pm.summary(m.trace,
                        var_names=var_names,
                        round_to=10,
                        kind='stats',
                        stat_funcs={'median': np.nanmedian},
                        extend=True)

    if make_threadsafe:
        pass

    else:
        if cornerplot:
            outpath = join(PLOTDIR,
                           '{}_{}_cornerplot.png'.format(REALID, modelid))
            tp.plot_cornerplot(prior_d, m, outpath)

        import IPython
        IPython.embed()
        #FIXME: save the SAMPLES from the trace (rather than the trace itself,
        #b/c of the local functions definined within the model context)

        assert 0
        #FIXME plots below

        if phaseplot:
            outpath = join(PLOTDIR,
                           '{}_{}_phaseplot.png'.format(REALID, modelid))
            tp.plot_phasefold(m, summdf, outpath)

        assert 0

        if sampleplot:
            outpath = join(PLOTDIR,
                           '{}_{}_sampleplot.png'.format(REALID, modelid))
            tp.plot_sampleplot(m, outpath, N_samples=100)
Exemple #5
0
def main(modelid):

    make_threadsafe = 0
    cut_tess = 1

    phaseplot = 1
    grounddepth = 1
    fittedzoom = 0
    cornerplot = 0

    OVERWRITE = 1
    REALID = 'TOI_837'

    PLOTDIR = os.path.join(RESULTSDIR,
                           '{}_{}_phot_results'.format(REALID, modelid))
    if not os.path.exists(PLOTDIR):
        os.mkdir(PLOTDIR)
    PLOTDIR = os.path.join(PLOTDIR, '20200617')

    ##########################################

    assert modelid in [
        'alltransit', 'alltransit_quad', 'alltransit_quaddepthvar'
    ]

    print(42 * '#')
    print(modelid)
    print(42 * '#')

    if not os.path.exists(PLOTDIR):
        os.mkdir(PLOTDIR)

    pklpath = os.path.join(os.path.expanduser('~'), 'local', 'timmy',
                           '{}_model_{}.pkl'.format(REALID, modelid))
    np.random.seed(42)

    # get tess data
    provenance = 'spoc'  # could be "cdips"
    yval = 'PDCSAP_FLUX'  # could be SAP_FLUX
    x_obs, y_obs, y_err = get_clean_tessphot(provenance,
                                             yval,
                                             binsize=None,
                                             maskflares=1)
    y_flat, y_trend = detrend_tessphot(x_obs, y_obs, y_err)
    s = np.isfinite(y_flat) & np.isfinite(x_obs) & np.isfinite(y_err)
    x_obs, y_flat, y_err = x_obs[s], y_flat[s], y_err[s]
    if cut_tess:
        x_obs, y_flat, y_err = _subset_cut(x_obs, y_flat, y_err)
    tess_texp = np.nanmedian(np.diff(x_obs))

    datasets = OrderedDict()
    datasets['tess'] = [x_obs, y_flat, y_err, tess_texp]

    datestrs = ['20200401', '20200426', '20200521', '20200614']
    for ix, d in enumerate(datestrs):
        x_obs, y_obs, y_err = get_elsauce_phot(datestr=d)
        x_obs -= 2457000  # convert to BTJD
        elsauce_texp = np.nanmedian(np.diff(x_obs))
        datasets[f'elsauce_{ix}'] = [x_obs, y_obs, y_err, elsauce_texp]

    # note: we're fitting the detrended data
    mp = ModelParser(modelid)

    prior_d = initialize_prior_d(mp.modelcomponents, datasets=datasets)

    m = ModelFitter(modelid,
                    datasets,
                    prior_d,
                    plotdir=PLOTDIR,
                    pklpath=pklpath,
                    overwrite=OVERWRITE)

    print(pm.summary(m.trace, var_names=list(prior_d.keys())))
    summdf = pm.summary(m.trace,
                        var_names=list(prior_d.keys()),
                        round_to=10,
                        kind='stats',
                        stat_funcs={'median': np.nanmedian},
                        extend=True)

    if modelid == 'alltransit_quaddepthvar':
        var_names = [
            'tess_roughdepth', 'elsauce_0_roughdepth', 'elsauce_1_roughdepth',
            'elsauce_2_roughdepth', 'elsauce_3_roughdepth'
        ]
        ddf = pm.summary(m.trace,
                         var_names=var_names,
                         round_to=10,
                         kind='stats',
                         stat_funcs={'median': np.nanmedian},
                         extend=True)
        print(ddf)

    if make_threadsafe:
        pass

    else:
        if cornerplot:
            outpath = join(PLOTDIR, f'{REALID}_{modelid}_cornerplot.png')
            tp.plot_cornerplot(prior_d, m, outpath)

        if phaseplot:
            outpath = join(PLOTDIR, f'{REALID}_{modelid}_phaseplot.png')
            tp.plot_phasefold(m, summdf, outpath, modelid=modelid, inppt=1)

        if fittedzoom:
            outpath = join(PLOTDIR,
                           '{}_{}_fittedzoom.png'.format(REALID, modelid))
            tp.plot_fitted_zoom(m, summdf, outpath, modelid=modelid)

        if grounddepth:
            outpath = join(PLOTDIR, f'{REALID}_{modelid}_grounddepth.png')
            tp.plot_grounddepth(m, summdf, outpath, modelid=modelid)
Exemple #6
0
def main(modelid):

    make_threadsafe = 0
    phaseplot = 0
    cornerplot = 0
    fittedzoom = 0
    grounddepth = 1

    writevespa = 0
    sampleplot = 0

    OVERWRITE = 1
    REALID = 'TOI_837'
    provenance = 'spoc'  # could be "cdips"
    yval = 'PDCSAP_FLUX'  # could be SAP_FLUX

    PLOTDIR = os.path.join(RESULTSDIR,
                           '{}_{}_phot_results'.format(REALID, modelid))
    if not os.path.exists(PLOTDIR):
        os.mkdir(PLOTDIR)
    PLOTDIR = os.path.join(PLOTDIR, '20200518')

    ##########################################

    assert modelid == 'transit'

    print(42 * '#')
    print(modelid)
    print(42 * '#')

    if not os.path.exists(PLOTDIR):
        os.mkdir(PLOTDIR)

    pklpath = os.path.join(os.path.expanduser('~'), 'local', 'timmy',
                           '{}_model_{}.pkl'.format(REALID, modelid))
    np.random.seed(42)

    x_obs, y_obs, y_err = get_clean_tessphot(provenance,
                                             yval,
                                             binsize=None,
                                             maskflares=1)
    y_flat, y_trend = detrend_tessphot(x_obs, y_obs, y_err)
    s = np.isfinite(y_flat) & np.isfinite(x_obs) & np.isfinite(y_err)
    x_obs, y_flat, y_err = x_obs[s], y_flat[s], y_err[s]

    if writevespa:
        _write_vespa(x_obs, y_flat, y_err)
        return

    # note: we're fitting the detrended data
    mp = ModelParser(modelid)
    prior_d = initialize_prior_d(mp.modelcomponents)
    data_df = pd.DataFrame({'x_obs': x_obs, 'y_obs': y_flat, 'y_err': y_err})
    m = ModelFitter(modelid,
                    data_df,
                    prior_d,
                    plotdir=PLOTDIR,
                    pklpath=pklpath,
                    overwrite=OVERWRITE)

    print(pm.summary(m.trace, var_names=list(prior_d.keys())))
    summdf = pm.summary(m.trace,
                        var_names=list(prior_d.keys()),
                        round_to=10,
                        kind='stats',
                        stat_funcs={'median': np.nanmedian},
                        extend=True)

    if make_threadsafe:
        pass

    else:
        if fittedzoom:
            outpath = join(PLOTDIR,
                           '{}_{}_fittedzoom.png'.format(REALID, modelid))
            tp.plot_fitted_zoom(m, summdf, outpath)

        if grounddepth:
            outpath = join(PLOTDIR,
                           '{}_{}_grounddepth.png'.format(REALID, modelid))
            tp.plot_grounddepth(m, summdf, outpath)

        if phaseplot:
            outpath = join(PLOTDIR,
                           '{}_{}_phaseplot.png'.format(REALID, modelid))
            tp.plot_phasefold(m, summdf, outpath)

        if cornerplot:
            outpath = join(PLOTDIR,
                           '{}_{}_cornerplot.png'.format(REALID, modelid))
            tp.plot_cornerplot(prior_d, m, outpath)

        # NOTE: following are deprecated
        if sampleplot:
            outpath = join(PLOTDIR,
                           '{}_{}_sampleplot.png'.format(REALID, modelid))
            tp.plot_sampleplot(m, outpath, N_samples=100)
Exemple #7
0
def main(modelid):

    seldate = '20200426'
    bp = 'Rband'
    N_samples = 12000  # nb: 7.5mins, decent but not perfect convergence

    # seldate = '20200614'
    # bp = 'Bband'
    # Nsamples = 12000 # 7min: gets rhat = 1.0 for all parameters.

    cornerplot = 1
    phaseplot = 0
    grounddepth = 0
    fittedzoom = 0

    make_threadsafe = 0
    cut_tess = 1
    OVERWRITE = 1
    REALID = 'TOI_837'

    PLOTDIR = os.path.join(RESULTSDIR,
                           f'{REALID}_{modelid}_{seldate}_{bp}_phot_results')
    if not os.path.exists(PLOTDIR):
        os.mkdir(PLOTDIR)
    PLOTDIR = os.path.join(PLOTDIR, f'20200617_{bp}')

    ##########################################

    assert modelid in ['onetransit']

    print(42 * '#')
    print(modelid)
    print(42 * '#')

    if not os.path.exists(PLOTDIR):
        os.mkdir(PLOTDIR)

    pklpath = os.path.join(os.path.expanduser('~'), 'local', 'timmy',
                           f'{REALID}_model_{modelid}_{seldate}_{bp}.pkl')
    np.random.seed(42)

    # get tess data
    provenance = 'spoc'  # could be "cdips"
    yval = 'PDCSAP_FLUX'  # could be SAP_FLUX
    x_obs, y_obs, y_err = get_clean_tessphot(provenance,
                                             yval,
                                             binsize=None,
                                             maskflares=1)
    y_flat, y_trend = detrend_tessphot(x_obs, y_obs, y_err)
    s = np.isfinite(y_flat) & np.isfinite(x_obs) & np.isfinite(y_err)
    x_obs, y_flat, y_err = x_obs[s], y_flat[s], y_err[s]
    if cut_tess:
        x_obs, y_flat, y_err = _subset_cut(x_obs, y_flat, y_err)
    tess_texp = np.nanmedian(np.diff(x_obs))

    datasets = OrderedDict()
    datasets['tess'] = [x_obs, y_flat, y_err, tess_texp]

    datestrs = ['20200401', '20200426', '20200521', '20200614']
    for ix, d in enumerate(datestrs):
        x_obs, y_obs, y_err = get_elsauce_phot(datestr=d)
        x_obs -= 2457000  # convert to BTJD
        elsauce_texp = np.nanmedian(np.diff(x_obs))
        datasets[f'elsauce_{ix}'] = [x_obs, y_obs, y_err, elsauce_texp]

    if seldate not in datestrs:
        raise NotImplementedError
    else:
        usedata = OrderedDict()
        tra_ind = int(np.argwhere(np.array(datestrs) == seldate))
        usedata[f'elsauce_{tra_ind}'] = (deepcopy(
            datasets[f'elsauce_{tra_ind}']))

    # note: we're fitting the detrended data
    mp = ModelParser(modelid)

    prior_d = initialize_prior_d(mp.modelcomponents, datasets=usedata)

    m = ModelFitter(modelid,
                    usedata,
                    prior_d,
                    plotdir=PLOTDIR,
                    pklpath=pklpath,
                    overwrite=OVERWRITE,
                    N_samples=N_samples)

    print(pm.summary(m.trace, var_names=list(prior_d.keys())))
    summdf = pm.summary(m.trace,
                        var_names=list(prior_d.keys()),
                        round_to=10,
                        kind='stats',
                        stat_funcs={'median': np.nanmedian},
                        extend=True)

    var_names = ['roughdepth']
    ddf = pm.summary(m.trace,
                     var_names=var_names,
                     round_to=10,
                     kind='stats',
                     stat_funcs={'median': np.nanmedian},
                     extend=True)
    print(ddf)
    d_1sig = np.percentile(m.trace.roughdepth, 50 - (68 / 2))
    d_2sig = np.percentile(m.trace.roughdepth, 50 - (95 / 2))
    print(f'1 sigma depth lower limit: {d_1sig:.6f}')
    print(f'2 sigma depth lower limit: {d_2sig:.6f}')

    if make_threadsafe:
        pass

    else:
        if cornerplot:
            outpath = join(PLOTDIR, f'{REALID}_{modelid}_cornerplot.png')
            prior_d['roughdepth'] = 4600e-6
            tp.plot_cornerplot(prior_d, m, outpath)