Exemple #1
0
def test_matmul_two_vars():
    x2 = ad.Variable(name="x2")
    x3 = ad.Variable(name="x3")
    y = ad.matmul_op(x2, x3)

    grad_x2, grad_x3 = ad.gradients(y, [x2, x3])

    executor = ad.Executor([y, grad_x2, grad_x3])
    x2_val = np.array([[1, 2], [3, 4], [5, 6]])  # 3x2
    x3_val = np.array([[7, 8, 9], [10, 11, 12]])  # 2x3

    y_val, grad_x2_val, grad_x3_val = executor.run(feed_dict={
        x2: x2_val,
        x3: x3_val
    })

    expected_yval = np.matmul(x2_val, x3_val)
    expected_grad_x2_val = np.matmul(np.ones_like(expected_yval),
                                     np.transpose(x3_val))
    expected_grad_x3_val = np.matmul(np.transpose(x2_val),
                                     np.ones_like(expected_yval))

    assert isinstance(y, ad.Node)
    assert np.array_equal(y_val, expected_yval)
    assert np.array_equal(grad_x2_val, expected_grad_x2_val)
    assert np.array_equal(grad_x3_val, expected_grad_x3_val)
Exemple #2
0
def test_grad_of_grad():
    x2 = ad.Variable(name="x2")
    x3 = ad.Variable(name="x3")
    y = x2 * x2 + x2 * x3

    grad_x2, grad_x3 = ad.gradients(y, [x2, x3])
    grad_x2_x2, grad_x2_x3 = ad.gradients(grad_x2, [x2, x3])

    executor = ad.Executor([y, grad_x2, grad_x3, grad_x2_x2, grad_x2_x3])
    x2_val = 2 * np.ones(3)
    x3_val = 3 * np.ones(3)
    y_val, grad_x2_val, grad_x3_val, grad_x2_x2_val, grad_x2_x3_val = executor.run(
        feed_dict={
            x2: x2_val,
            x3: x3_val
        })

    expected_yval = x2_val * x2_val + x2_val * x3_val
    expected_grad_x2_val = 2 * x2_val + x3_val
    expected_grad_x3_val = x2_val
    expected_grad_x2_x2_val = 2 * np.ones_like(x2_val)
    expected_grad_x2_x3_val = 1 * np.ones_like(x2_val)

    assert isinstance(y, ad.Node)
    assert np.array_equal(y_val, expected_yval)
    assert np.array_equal(grad_x2_val, expected_grad_x2_val)
    assert np.array_equal(grad_x3_val, expected_grad_x3_val)
    assert np.array_equal(grad_x2_x2_val, expected_grad_x2_x2_val)
    assert np.array_equal(grad_x2_x3_val, expected_grad_x2_x3_val)
Exemple #3
0
def test_add_mul_mix_3():
    x2 = ad.Variable(name="x2")
    x3 = ad.Variable(name="x3")
    z = x2 * x2 + x2 + x3 + 3
    y = z * z + x3

    grad_x2, grad_x3 = ad.gradients(y, [x2, x3])

    executor = ad.Executor([y, grad_x2, grad_x3])
    x2_val = 2 * np.ones(3)
    x3_val = 3 * np.ones(3)
    y_val, grad_x2_val, grad_x3_val = executor.run(feed_dict={
        x2: x2_val,
        x3: x3_val
    })

    z_val = x2_val * x2_val + x2_val + x3_val + 3
    expected_yval = z_val * z_val + x3_val
    expected_grad_x2_val = 2 * (x2_val * x2_val + x2_val + x3_val +
                                3) * (2 * x2_val + 1)
    expected_grad_x3_val = 2 * (x2_val * x2_val + x2_val + x3_val + 3) + 1
    assert isinstance(y, ad.Node)
    assert np.array_equal(y_val, expected_yval)
    assert np.array_equal(grad_x2_val, expected_grad_x2_val)
    assert np.array_equal(grad_x3_val, expected_grad_x3_val)
Exemple #4
0
def test_add_mul_mix_2():
    x1 = ad.Variable(name="x1")
    x2 = ad.Variable(name="x2")
    x3 = ad.Variable(name="x3")
    x4 = ad.Variable(name="x4")
    y = x1 + x2 * x3 * x4

    grad_x1, grad_x2, grad_x3, grad_x4 = ad.gradients(y, [x1, x2, x3, x4])

    executor = ad.Executor([y, grad_x1, grad_x2, grad_x3, grad_x4])
    x1_val = 1 * np.ones(3)
    x2_val = 2 * np.ones(3)
    x3_val = 3 * np.ones(3)
    x4_val = 4 * np.ones(3)
    y_val, grad_x1_val, grad_x2_val, grad_x3_val, grad_x4_val = executor.run(
        feed_dict={
            x1: x1_val,
            x2: x2_val,
            x3: x3_val,
            x4: x4_val
        })

    assert isinstance(y, ad.Node)
    assert np.array_equal(y_val, x1_val + x2_val * x3_val * x4_val)
    assert np.array_equal(grad_x1_val, np.ones_like(x1_val))
    assert np.array_equal(grad_x2_val, x3_val * x4_val)
    assert np.array_equal(grad_x3_val, x2_val * x4_val)
    assert np.array_equal(grad_x4_val, x2_val * x3_val)
Exemple #5
0
def test_mul_by_const():
    x2 = ad.Variable(name="x2")
    y = 5 * x2

    grad_x2, = ad.gradients(y, [x2])

    executor = ad.Executor([y, grad_x2])
    x2_val = 2 * np.ones(3)
    y_val, grad_x2_val = executor.run(feed_dict={x2: x2_val})

    assert isinstance(y, ad.Node)
    assert np.array_equal(y_val, x2_val * 5)
    assert np.array_equal(grad_x2_val, np.ones_like(x2_val) * 5)
Exemple #6
0
def test_mul_two_vars():
    x2 = ad.Variable(name="x2")
    x3 = ad.Variable(name="x3")
    y = x2 * x3

    grad_x2, grad_x3 = ad.gradients(y, [x2, x3])

    executor = ad.Executor([y, grad_x2, grad_x3])
    x2_val = 2 * np.ones(3)
    x3_val = 3 * np.ones(3)
    y_val, grad_x2_val, grad_x3_val = executor.run(feed_dict={
        x2: x2_val,
        x3: x3_val
    })

    assert isinstance(y, ad.Node)
    assert np.array_equal(y_val, x2_val * x3_val)
    assert np.array_equal(grad_x2_val, x3_val)
    assert np.array_equal(grad_x3_val, x2_val)