Exemple #1
0
    def _init_mask_head(cls, cfg, input_shape):
        if not cfg.MODEL.MASK_ON:
            return {}

        in_features = cfg.MODEL.ROI_HEADS.IN_FEATURES
        pooler_resolution = cfg.MODEL.ROI_MASK_HEAD.POOLER_RESOLUTION
        pooler_scales = tuple(1.0 / input_shape[k].stride for k in in_features)
        sampling_ratio = cfg.MODEL.ROI_MASK_HEAD.POOLER_SAMPLING_RATIO
        pooler_type = cfg.MODEL.ROI_MASK_HEAD.POOLER_TYPE

        in_channels = [input_shape[f].channels for f in in_features][0]

        ret = {"mask_in_features": in_features}
        ret["mask_pooler"] = ROIPooler(
            output_size=pooler_resolution,
            scales=pooler_scales,
            sampling_ratio=sampling_ratio,
            pooler_type=pooler_type,
        )
        ret["mask_head"] = build_mask_head(
            cfg,
            ShapeSpec(channels=in_channels,
                      width=pooler_resolution,
                      height=pooler_resolution))
        return ret
Exemple #2
0
    def _init_box_head(cls, cfg, input_shape):
        in_features = cfg.MODEL.ROI_HEADS.IN_FEATURES
        pooler_resolution = cfg.MODEL.ROI_BOX_HEAD.POOLER_RESOLUTION
        pooler_scales = tuple(1.0 / input_shape[k].stride for k in in_features)
        sampling_ratio = cfg.MODEL.ROI_BOX_HEAD.POOLER_SAMPLING_RATIO
        pooler_type = cfg.MODEL.ROI_BOX_HEAD.POOLER_TYPE

        in_channels = [input_shape[f].channels for f in in_features]
        assert len(set(in_channels)) == 1, in_channels

        in_channels = in_channels[0]

        box_pooler = ROIPooler(
            output_size=pooler_resolution,
            scales=pooler_scales,
            sampling_ratio=sampling_ratio,
            pooler_type=pooler_type,
        )
        box_head = build_box_head(
            cfg,
            ShapeSpec(channels=in_channels,
                      height=pooler_resolution,
                      width=pooler_resolution))
        box_predictor = FastRCNNOutputLayers(cfg, box_head.output_shape)
        return {
            "box_in_features": in_features,
            "box_pooler": box_pooler,
            "box_head": box_head,
            "box_predictor": box_predictor,
        }
Exemple #3
0
 def output_shape(self):
     return {
         name: ShapeSpec(
             channels=self._out_feature_channels[name],
             stride=self._out_feature_strides[name]
         )
         for name in self._out_features
     }
Exemple #4
0
    def _init_box_head(cls, cfg, input_shape):
        in_features = cfg.MODEL.ROI_HEADS.IN_FEATURES
        pooler_resolution = cfg.MODEL.ROI_BOX_HEAD.POOLER_RESOLUTION
        pooler_scales = tuple(1.0 / input_shape[k].stride for k in in_features)
        sampling_ratio = cfg.MODEL.ROI_BOX_HEAD.POOLER_SAMPLING_RATIO
        pooler_type = cfg.MODEL.ROI_BOX_HEAD.POOLER_TYPE
        cascade_bbox_reg_weights = cfg.MODEL.ROI_BOX_CASCADE_HEAD.BBOX_REG_WEIGHTS
        cascade_ious = cfg.MODEL.ROI_BOX_CASCADE_HEAD.IOUS

        assert len(cascade_bbox_reg_weights) == len(cascade_ious)
        assert cfg.MODEL.ROI_BOX_HEAD.CLS_AGNOSTIC_BBOX_REG,  \
            "CascadeROIHeads only support class-agnostic regression now!"
        assert cascade_ious[0] == cfg.MODEL.ROI_HEADS.IOU_THRESHOLDS[0]

        in_channels = [input_shape[f].channels for f in in_features]
        assert len(set(in_channels)) == 1, in_channels

        in_channels = in_channels[0]

        box_pooler = ROIPooler(
            output_size=pooler_resolution,
            scales=pooler_scales,
            sampling_ratio=sampling_ratio,
            pooler_type=pooler_type,
        )
        pooled_shape = ShapeSpec(channels=in_channels,
                                 width=pooler_resolution,
                                 height=pooler_resolution)

        box_heads, box_predictors, proposal_matchers = [], [], []
        for match_iou, bbox_reg_weights in zip(cascade_ious,
                                               cascade_bbox_reg_weights):
            box_head = build_box_head(cfg, pooled_shape)
            box_heads.append(box_head)
            box_predictors.append(
                FastRCNNOutputLayers(
                    cfg,
                    box_head.output_shape,
                    box2box_transform=Box2BoxTransform(
                        weights=bbox_reg_weights),
                ))

            proposal_matchers.append(
                Matcher([match_iou], [0, 1], allow_low_quality_matches=False))

        return {
            "box_in_features": in_features,
            "box_pooler": box_pooler,
            "box_heads": box_heads,
            "box_predictors": box_predictors,
            "proposal_matchers": proposal_matchers,
        }
Exemple #5
0
    def _init_point_head(self, cfg, input_shape):
        self.mask_point_on = cfg.MODEL.ROI_MASK_HEAD.POINT_HEAD_ON
        if not self.mask_point_on:
            return

        self.mask_point_in_features = cfg.MODEL.POINT_HEAD.IN_FEATURES
        self.mask_point_train_num_points = cfg.MODEL.POINT_HEAD.TRAIN_NUM_POINTS
        self.mask_point_oversample_ratio = cfg.MODEL.POINT_HEAD.OVERSAMPLE_RATIO
        self.mask_point_importance_sample_ratio = cfg.MODEL.POINT_HEAD.IMPORTANCE_SAMPLE_RATIO
        self.mask_point_subdivision_steps = cfg.MODEL.POINT_HEAD.SUBDIVISION_STEPS
        self.mask_point_subdivision_num_points = cfg.MODEL.POINT_HEAD.SUBDIVISION_NUM_POINTS

        in_channels = np.sum(
            [input_shape[f].channels for f in self.mask_point_in_features])
        self.mask_point_head = build_point_head(
            cfg, ShapeSpec(channels=in_channels, width=1, height=1))
Exemple #6
0
    def _init_mask_head(self, cfg, input_shape):
        self.mask_on = cfg.MODEL.MASK_ON
        if not self.mask_on:
            return
        self.mask_coarse_in_features = cfg.MODEL.ROI_MASK_HEAD.IN_FEATURES
        self.mask_coarse_side_size = cfg.MODEL.ROI_MASK_HEAD.POOLER_RESOLUTION
        self._feature_scales = {
            k: 1.0 / v.stride
            for k, v in input_shape.items()
        }

        in_channels = np.sum(
            [input_shape[f].channels for f in self.mask_coarse_in_features])
        self.mask_coarse_head = build_mask_head(
            cfg,
            ShapeSpec(
                channels=in_channels,
                width=self.mask_coarse_side_size,
                height=self.mask_coarse_side_size,
            ),
        )
        self._init_point_head(cfg, input_shape)
Exemple #7
0
    def __init__(
        self,
        input_shape,
        *,
        box2box_transform,
        num_classes,
        cls_agnostic_bbox_reg=False,
        smooth_l1_beta=0.0,
        test_score_thresh=0.0,
        test_nms_thresh=0.5,
        test_topk_per_image=100,
    ):
        """
        NOTE: this interface is experimental.
        """
        super().__init__()

        if isinstance(input_shape, int):
            input_shape = ShapeSpec(channels=input_shape)
        input_size = input_shape.channels * (input_shape.width
                                             or 1) * (input_shape.height or 1)
        self.cls_score = nn.Linear(input_size, num_classes + 1)
        num_bbox_reg_classes = 1 if cls_agnostic_bbox_reg else num_classes
        box_dim = len(box2box_transform.weights)
        self.bbox_pred = nn.Linear(input_size, num_bbox_reg_classes * box_dim)

        nn.init.normal_(self.cls_score.weight, std=0.01)
        nn.init.normal_(self.bbox_pred.weight, std=0.001)
        for l in [self.cls_score, self.bbox_pred]:
            nn.init.constant_(l.bias, 0)

        self.box2box_transform = box2box_transform
        self.smooth_l1_beta = smooth_l1_beta
        self.test_score_thresh = test_score_thresh
        self.test_nms_thresh = test_nms_thresh
        self.test_topk_per_image = test_topk_per_image
Exemple #8
0
 def output_shape(self):
     o = self._output_size
     if isinstance(o, int):
         return ShapeSpec(channels=o)
     else:
         return ShapeSpec(channels=o[0], height=o[1], width=o[2])