Exemple #1
0
def load_neuron(input_file,
                line_delimiter='\n',
                soma_type=None,
                tree_types=None,
                remove_duplicates=True):
    '''
    Io method to load an swc or h5 file into a Neuron object.
    TODO: Check if tree is connected to soma, otherwise do
    not include it in neuron structure and warn the user
    that there are disconnected components
    '''

    if tree_types is not None:
        td.update(tree_types)

    # Definition of swc types from type_dict function
    if soma_type is None:
        soma_index = TYPE_DCT['soma']
    else:
        soma_index = soma_type

    # Make neuron with correct filename and load data
    if os.path.splitext(input_file)[-1] == '.swc':
        data = swc_to_data(
            read_swc(input_file=input_file, line_delimiter=line_delimiter))
        neuron = Neuron.Neuron(name=input_file.replace('.swc', ''))

    elif os.path.splitext(input_file)[-1] == '.h5':
        data = read_h5(input_file=input_file,
                       remove_duplicates=remove_duplicates)
        neuron = Neuron.Neuron(name=input_file.replace('.h5', ''))

    try:
        soma_ids = _np.where(_np.transpose(data)[1] == soma_index)[0]
    except IndexError:
        raise LoadNeuronError('Soma points not in the expected format')

    # Extract soma information from swc
    soma = Soma.Soma(x=_np.transpose(data)[SWC_DCT['x']][soma_ids],
                     y=_np.transpose(data)[SWC_DCT['y']][soma_ids],
                     z=_np.transpose(data)[SWC_DCT['z']][soma_ids],
                     d=_np.transpose(data)[SWC_DCT['radius']][soma_ids])

    # Save soma in Neuron
    neuron.set_soma(soma)
    p = _np.array(_np.transpose(data)[6],
                  dtype=int) - _np.transpose(data)[0][0]
    # return p, soma_ids
    try:
        dA = sp.csr_matrix((_np.ones(len(p) - len(soma_ids)),
                            (range(len(soma_ids), len(p)), p[len(soma_ids):])),
                           shape=(len(p), len(p)))
    except Exception:
        raise LoadNeuronError(
            'Cannot create connectivity, nodes not connected correctly.')

    # assuming soma points are in the beginning of the file.
    comp = cs.connected_components(dA[len(soma_ids):, len(soma_ids):])

    # Extract trees
    for i in range(comp[0]):
        tree_ids = _np.where(comp[1] == i)[0] + len(soma_ids)
        tree = make_tree(data[tree_ids])
        neuron.append_tree(tree, td=td)

    return neuron
Exemple #2
0
def test_neuron_set_soma():
    neu1 = Neuron.Neuron()
    neu1.set_soma(soma_test)
    nt.ok_(neu1.soma.is_equal(soma_test))
Exemple #3
0
def test_neuron_rename():
    neu1 = Neuron.Neuron()
    neu1.rename('test')
    nt.ok_(neu1.name == 'test')
Exemple #4
0
def test_copy_neuron():
    neu1 = Neuron.Neuron()
    neu2 = neu1.copy_neuron()
    nt.ok_(neu1.is_equal(neu2))
    nt.ok_(neu1 != neu2)
Exemple #5
0
import numpy as np
from tmd.Neuron import Neuron
from tmd.Soma import Soma
from tmd.Tree import Tree
from tmd.utils import TREE_TYPE_DICT as td

soma_test = Soma.Soma([0.],[0.],[0.],[12.])
soma_test1 = Soma.Soma([0.],[0.],[0.],[6.])
apical_test = Tree.Tree(x=np.array([5., 5.]), y=np.array([6., 6.]), z=np.array([ 7., 7.]),
                       d=np.array([16., 16.]), t=np.array([4, 4]), p=np.array([-1,  0]))
basal_test = Tree.Tree(x=np.array([4.]), y=np.array([5.]), z=np.array([6.]),
                       d=np.array([14.]), t=np.array([3]), p=np.array([-1]))
axon_test = Tree.Tree(x=np.array([ 3.]), y=np.array([4.]), z=np.array([5.]),
                      d=np.array([12.]), t=np.array([2 ]), p=np.array([-1]))

neu_test = Neuron.Neuron()
neu_test.set_soma(soma_test)
neu_test.append_tree(apical_test, td)

def test_neuron_init_():
    neu1 = Neuron.Neuron()
    nt.ok_(neu1.name == 'Neuron')
    nt.ok_(isinstance(neu1.soma, Soma.Soma))
    nt.ok_(neu1.axon == [])
    nt.ok_(neu1.basal == [])
    nt.ok_(neu1.apical == [])
    nt.ok_(neu1.neurites == [])
    neu1 = Neuron.Neuron(name='test')
    nt.ok_(neu1.name == 'test')

def test_neuron_rename():