def __init__( self, vocab_file: Optional[str] = None, add_special_tokens: bool = True, unk_token: str = "[UNK]", sep_token: str = "[SEP]", cls_token: str = "[CLS]", clean_text: bool = True, handle_chinese_chars: bool = True, strip_accents: bool = True, lowercase: bool = True, wordpieces_prefix: str = "##", ): if vocab_file is not None: tokenizer = Tokenizer( WordPiece.from_files(vocab_file, unk_token=unk_token)) else: tokenizer = Tokenizer(WordPiece.empty()) tokenizer.add_special_tokens([unk_token, sep_token, cls_token]) tokenizer.normalizer = BertNormalizer( clean_text=clean_text, handle_chinese_chars=handle_chinese_chars, strip_accents=strip_accents, lowercase=lowercase, ) tokenizer.pre_tokenizer = BertPreTokenizer() if add_special_tokens and vocab_file is not None: sep_token_id = tokenizer.token_to_id(sep_token) if sep_token_id is None: raise TypeError("sep_token not found in the vocabulary") cls_token_id = tokenizer.token_to_id(cls_token) if cls_token_id is None: raise TypeError("cls_token not found in the vocabulary") tokenizer.post_processor = BertProcessing( (sep_token, sep_token_id), (cls_token, cls_token_id)) tokenizer.decoders = decoders.WordPiece(prefix=wordpieces_prefix) parameters = { "model": "BertWordPiece", "add_special_tokens": add_special_tokens, "unk_token": unk_token, "sep_token": sep_token, "cls_token": cls_token, "clean_text": clean_text, "handle_chinese_chars": handle_chinese_chars, "strip_accents": strip_accents, "lowercase": lowercase, "wordpieces_prefix": wordpieces_prefix, } super().__init__(tokenizer, parameters)
def get_tokenizer_trainer(): # START init_tokenizer_trainer from tokenizers import Tokenizer, models, normalizers, pre_tokenizers, decoders, trainers tokenizer = Tokenizer(models.Unigram()) tokenizer.normalizer = normalizers.NFKC() tokenizer.pre_tokenizer = pre_tokenizers.ByteLevel() tokenizer.decoders = decoders.ByteLevel() trainer = trainers.UnigramTrainer( vocab_size=20000, initial_alphabet=pre_tokenizers.ByteLevel.alphabet(), special_tokens=["<PAD>", "<BOS>", "<EOS>"], ) # END init_tokenizer_trainer trainer.show_progress = False return tokenizer, trainer
bert_tokenizer.train_from_iterator(sentences, trainer=trainer) if serialize_path: bert_tokenizer.save(serialize_path) return bert_tokenizer ids = bert_tokenizer.encode(sentences[10]).ids bert_tokenizer.decode(ids) from tokenizers import Tokenizer, models, normalizers, pre_tokenizers, decoders, trainers tokenizer = Tokenizer(models.Unigram()) tokenizer.normalizer = normalizers.NFKC() tokenizer.pre_tokenizer = pre_tokenizers.ByteLevel() tokenizer.decoders = decoders.ByteLevel() trainer = trainers.UnigramTrainer( vocab_size=20000, initial_alphabet=pre_tokenizers.ByteLevel.alphabet(), special_tokens=["<PAD>", "<BOS>", "<EOS>"], ) tokenizer.train_from_iterator(sentences, trainer=trainer) tokenizer.encode(sentences[4]).ids tokenizer.decode(tokenizer.encode(sentences[4]).ids) tokenizer.save('bert_out/test2') tokenizer.save_pretrained('bert_out/test')