Exemple #1
0
class TestDataSerializer(TestCase):
    def setUp(self):
        self.serializer = SpectrumSerializer()

    def test_serialize_spectrum(self):
        flux = np.arange(1, 200) * units.Jy
        wavelength = np.arange(1, 200) * units.Angstrom
        spectrum = Spectrum1D(spectral_axis=wavelength, flux=flux)
        serialized = self.serializer.serialize(spectrum)

        self.assertTrue(isinstance(serialized, str))
        serialized = json.loads(serialized)
        self.assertTrue(serialized['photon_flux'])
        self.assertTrue(serialized['photon_flux_units'])
        self.assertTrue(serialized['wavelength'])
        self.assertTrue(serialized['wavelength_units'])

    def test_serialize_spectrum_invalid(self):
        with self.assertRaises(Exception):
            self.serializer.serialize({'flux': [1, 2], 'wavelength': [1, 2]})

    def test_deserialize_spectrum(self):
        serialized_spectrum = json.dumps({
            'photon_flux': [1, 2],
            'photon_flux_units': 'ph / (Angstrom cm2 s)',
            'wavelength': [1, 2],
            'wavelength_units': 'Angstrom'
        })
        deserialized = self.serializer.deserialize(serialized_spectrum)

        self.assertTrue(type(deserialized) is Spectrum1D)
        self.assertEqual(deserialized.flux.mean().value, 1.5)
        self.assertEqual(deserialized.wavelength.mean().value, 1.5)

    def test_deserialize_spectrum_invalid(self):
        with self.assertRaises(Exception):
            self.serializer.deserialize(json.dumps({'invalid_key': 'value'}))
Exemple #2
0
def photon_spectrum_to_energy_spectrum(apps, schema_editor):
    reduced_datum = apps.get_model('tom_dataproducts', 'ReducedDatum')
    spectrum_serializer = SpectrumSerializer()
    for row in reduced_datum.objects.filter(data_type='spectroscopy'):
        # In order to avoid a KeyError on already-corrected data or data that has no need to be corrected, we only
        # perform the spectroscopy correction on values that have photon_flux/photon_flux_units
        if all(k in row.value.keys() for k in ['photon_flux', 'photon_flux_units', 'wavelength', 'wavelength_units']):
            photon_counts = Quantity(value=row.value['photon_flux'], unit=row.value['photon_flux_units'])
            wavelength = Quantity(value=row.value['wavelength'], unit=row.value['wavelength_units'])
            photon_spectrum = Spectrum1D(flux=photon_counts, spectral_axis=wavelength)
            energy_spectrum = photon_spectrum.flux * (photon_spectrum.energy / photon)
            energy_spectrum_object = Spectrum1D(
                                        spectral_axis=wavelength,
                                        flux=energy_spectrum.to('erg / (s cm2 AA)', spectral_density(wavelength)))
            row.value = spectrum_serializer.serialize(energy_spectrum_object)
            row.save()
def photon_spectrum_to_energy_spectrum(apps, schema_editor):
    reduced_datum = apps.get_model('tom_dataproducts', 'ReducedDatum')
    spectrum_serializer = SpectrumSerializer()
    for row in reduced_datum.objects.filter(data_type='spectroscopy'):
        photon_counts = Quantity(value=row.value['photon_flux'],
                                 unit=row.value['photon_flux_units'])
        wavelength = Quantity(value=row.value['wavelength'],
                              unit=row.value['wavelength_units'])
        photon_spectrum = Spectrum1D(flux=photon_counts,
                                     spectral_axis=wavelength)
        energy_spectrum = photon_spectrum.flux * (photon_spectrum.energy /
                                                  photon)
        energy_spectrum_object = Spectrum1D(spectral_axis=wavelength,
                                            flux=energy_spectrum.to(
                                                'erg / (s cm2 AA)',
                                                spectral_density(wavelength)))
        row.value = spectrum_serializer.serialize(energy_spectrum_object)
        row.save()