Exemple #1
0
def label_object_principal_axes(dataset, label_value):
    import numpy as np
    from tomviz import utils

    labels = dataset.active_scalars
    num_voxels = np.sum(labels == label_value)
    xx, yy, zz = utils.get_coordinate_arrays(dataset)

    data = np.zeros((num_voxels, 3))
    selection = labels == label_value
    assert np.any(selection), \
        "No voxels with label %d in label map" % label_value
    data[:, 0] = xx[selection]
    data[:, 1] = yy[selection]
    data[:, 2] = zz[selection]

    # Compute PCA on coordinates
    from scipy import linalg as la
    m, n = data.shape
    center = data.mean(axis=0)
    data -= center
    R = np.cov(data, rowvar=False)
    evals, evecs = la.eigh(R)
    idx = np.argsort(evals)[::-1]
    evecs = evecs[:, idx]
    evals = evals[idx]
    return (evecs, center)
Exemple #2
0
def label_object_principal_axes(dataset, label_value):
    import numpy as np
    from tomviz import utils
    labels = utils.get_array(dataset)
    num_voxels = np.sum(labels == label_value)
    xx, yy, zz = utils.get_coordinate_arrays(dataset)

    data = np.zeros((num_voxels, 3))
    selection = labels == label_value
    assert np.any(selection), \
        "No voxels with label %d in label map" % label_value
    data[:, 0] = xx[selection]
    data[:, 1] = yy[selection]
    data[:, 2] = zz[selection]

    # Compute PCA on coordinates
    from scipy import linalg as la
    m, n = data.shape
    center = data.mean(axis=0)
    data -= center
    R = np.cov(data, rowvar=False)
    evals, evecs = la.eigh(R)
    idx = np.argsort(evals)[::-1]
    evecs = evecs[:, idx]
    evals = evals[idx]
    return (evecs, center)