Exemple #1
0
    cap = cv2.VideoCapture(0)
    count = 0
    while cap.isOpened():
        ret, frame = cap.read()
        if ret:
            count += 1
            # if count % 1 == 0:
            # 转换通道, 转成Image 格式
            b, g, r = cv2.split(frame)
            img = cv2.merge([r, g, b])
            img = Image.fromarray(img.astype(np.uint8))

            # P网络
            pboxs = utils.PnetDetect(pnet, img, imgshow=False)
            # R网络
            rboxs = utils.RnetDetect(rnet, img, pboxs, imgshow=False)
            # O网络
            oboxs = utils.OnetDetect(onet,
                                     img,
                                     rboxs,
                                     imgshow=True,
                                     show_conf=False,
                                     isuse=True)
            img = np.array(img, dtype=np.uint8)

            # #转换通道BGR
            r, g, b = cv2.split(img)
            img = cv2.merge([b, g, r])
            cv2.imshow("img", img)
            # else:
            #     cv2.imshow("img", frame)
Exemple #2
0
    rnet = nets.R_Net(istraining=False)
    if torch.cuda.is_available():
        pnet = pnet.cuda()
        rnet = rnet.cuda()
    pnet.eval()
    rnet.eval()
    pnet.load_state_dict(
        torch.load(
            r'C:\Users\liev\Desktop\myproject\face_recognition\params\p_params.pkl'
        ))  # 导入训练参数
    rnet.load_state_dict(
        torch.load(
            r'C:\Users\liev\Desktop\myproject\face_recognition\params\r_params.pkl'
        ))  # 导入训练参数

    #输入图片
    img = Image.open(
        r"C:\Users\liev\Desktop\data\face_match_pic\14ce36d3d539b6009c2f88f9ea50352ac75cb79f.jpg"
    )

    # P网络
    start_tim = time.time()
    pboxs = utils.PnetDetect(pnet, img, imgshow=False)
    pnet_tim = time.time()
    # R网络
    rboxs = utils.RnetDetect(rnet, img, pboxs, imgshow=True, show_conf=False)
    rnet_tim = time.time()

    print("pnet_time:", pnet_tim - start_tim, "rnet_time:",
          rnet_tim - pnet_tim)